Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arturo Romero is active.

Publication


Featured researches published by Arturo Romero.


Chemosphere | 2014

Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI)

Sergio Rodríguez; L. Vasquez; D. Costa; Arturo Romero; Aurora Santos

Persulfate (PS) was employed in the oxidation of Orange G (OG), an azo dye commonly found in textile wastewaters. Activation of PS was conducted with iron to generate sulfate free radicals (SO4(-)) with high redox potential capable to oxidize most of the organics in water. Identification of oxidation intermediates was carried out by analyzing at different times organic by-products generated from treatment of a concentrate dye solution (11.6 mM) with 153 mM of PS and 20 mM of Fe(II) at 20 °C. Intermediate reaction products (mainly phenol (PH) and benzoquinone (BQ), and in less extent aniline, phenolic compounds and naphthalene type compounds with quinone groups) were identified by GC/MS and HPLC, and an oxidation pathway was proposed for the oxidation of OG with iron activated PS. The effect of iron valence (0, II and III) in the oxidation of an aqueous solution of OG (containing 0.1 mM) was studied in a 0.5 L batch reactor at 20 °C. Initial activator and PS concentrations employed were both 1 mM. Complete pollutant removal was achieved within the first 30 min when iron II or III were employed as activators. Quinone intermediates generated during pollutant oxidation may act as electron shuttles, allowing the reduction of Fe(III) into Fe(II) in the redox cycling of iron. Therefore, activation of PS by Fe(III) allowed complete OG removal. When zero valent iron (ZVI) was employed (particle diameter size 0.74 mm) the limiting step in SO4(-) generation was the surface reaction between ZVI and the oxidant yielding a lower oxidation rate of the dye. An increase in the oxidant dosage (0.2 mM OG, 2 mM Fe(III) and 6 mM PS) allowed complete pollutant and ecotoxicity removal, as well as mineralization close to 75%.


Journal of Hazardous Materials | 2009

In situ oxidation remediation technologies: Kinetic of hydrogen peroxide decomposition on soil organic matter

Arturo Romero; Aurora Santos; Fernando Vicente; Sergio Rodríguez; A. López Lafuente

Rates of hydrogen peroxide decomposition were investigated in soils slurries. The interaction soil-hydrogen peroxide was studied using a slurry system at 20 degrees C and pH 7. To determine the role of soil organic matter (SOM) in the decomposition of hydrogen peroxide, several experiments were carried out with two soils with different SOM content (S1=15.1%, S2=10%). The influence of the oxidant dosage ([H2O2](o) from 10 to 30 g L(-1) and soil weight to liquid phase volume ratio=500 g L(-1)) was investigated using the two calcareous loamy sand soil samples. The results showed a rate dependency on both SOM and hydrogen peroxide concentration being the H2O2 decomposition rate over soil surface described by a second-order kinetic expression r(H2O2) = -dn(H2O2) / W(SOM) dt = kC(H2O2) C(SOM). Thermogravimetric analysis (TGA) was used to evaluate the effect caused by the application of this oxidant on the SOM content. It was found a slightly increase of SOM content after treatment with hydrogen peroxide, probably due to the incorporation of oxygen from the oxidant (hydrogen peroxide).


Journal of Hazardous Materials | 2009

Chemical oxidation of 2,4-dimethylphenol in soil by heterogeneous Fenton process

Arturo Romero; Aurora Santos; Fernando Vicente

Hydrogen peroxide has been used to oxidize a sorbed aromatic contaminant in a loamy sand with 195.9 g kg(-1) of organic carbon by using iron as catalyst at 20 degrees C. The 2,4-dimethylphenol (2,4-DMP) was chosen as pollutant. Because of this soil generates a slightly basic pH in contact to an aqueous phase the solubility of the iron cation was determined in absence and presence of a chelating agent (l-ascorbic acid, l-Asc) and with and without soil. From results, it was found that in presence of soil the iron cation was always adsorbed or precipitaed onto the soil. Therefore, the procedure selected for soil remediation was to add firstly the iron solution used as catalyst and following the hydrogen peroxide solution used as oxidant. As iron cation is sorbed onto the soil before the oxidant reagent is provided a heterogeneous catalytic system results. This modified Fenton runs have been carried out using 0.11 mg(2,4-DMP) g(-1)(soil) and 2.1 mg(Fe) g(-1)(soil). The H(2)O(2)/pollutant weight ratios used were 182 and 364. The results show that H(2)O(2) oxidizes 2,4-DMP producing CO(2) and acetic acid. After 20 min of reaction time a pollutant conversion of 75% and 86% was found, depending on the H(2)O(2) dosage. Moreover, it was found that hydrogen peroxide was heterogeneously decomposed by the soil (due to its organic and/or inorganic components) and its decomposition rate decreases when the iron was previously precipitated-impregnated into the soil.


Science of The Total Environment | 2016

Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil

M. Peluffo; Fernando Pardo; Aurora Santos; Arturo Romero

Contamination of soils by persistent pollutants is considered an important matter of increasing concern. In this work, activated persulfate (PS) was applied for the remediation of a soil contaminated with polycyclic aromatic hydrocarbons (PAHs), such as anthracene (ANT), phenanthrene (PHE), pyrene (PYR) and benzo[a]pyrene (BaP). PS activation was performed by different ways; where ferric, ferrous sulfate salts (1-5mmol·L(-1)) and nanoparticles of zerovalent iron (nZVI) were used as activators. Moreover, in order to improve the oxidation rate of contaminants in the aqueous phase, the addition of sodium dodecyl sulfate (SDS), as anionic surfactant, was tested. On the other hand, it was also studied the role of humic acids (HA), as reducing agent or surfactant, on PAHs conversion. Removal efficiencies near 100% were achieved for ANT and BaP in all the runs carried out. Nevertheless, remarkable differences on removal efficiencies were observed for the different techniques applied in case of PHE and PYR. In this sense, the highest conversions of PHE (80%) and PYR (near 100%) were achieved when nZVI was used as activator. Similar results were obtained when activation was carried out either with Fe(2+) or Fe(3+). This can be explained by the presence of quinone type compounds, as 9,10-anthraquinone (ATQ), that can promote the reduction of Fe(3+) into Fe(2+), permitting PS radicals to be generated. On the other hand, the addition of HA did not produce an improvement of the process while surfactant addition slightly increases the PAHs removal. Furthermore, a kinetic model was developed, describing the behavior of persulfate consumption, and contaminants removal under first order kinetics.


Chemosphere | 2011

Enhancing p-cresol extraction from soil.

Juana María Rosas; Fernando Vicente; Aurora Santos; Arturo Romero

Soil washing is a potential technology for rapid removal of organic hydrocarbons sorbed to soils. In this work, p-cresol desorption with different non-ionic surfactants (Tween 80, Brij 30 and Triton X-100) was compared to cyclodextrine and citrate as solubilizer. A series of batch extraction experiments were conducted at 20°C using the field soil with different extracting solutions at various concentrations to investigate the removal efficiency and to optimize the concentration of the extractant. The use of the different extracting agents was very selective to p-cresol extraction, minimizing soil organic matter releasing and maintaining the natural pH of the soil. The highest asymptotic values of desorption percentages were obtained for Tween 80 and Brij 30 at 48 h. However, Brij 30 ecotoxicity (EC(50)=0.5 mgL(-1)) is in the same order of that obtained for p-cresol, being this surfactant clearly ruled out. Liquid to solid ratio of 2.5 mLg(-1) presented the best extraction results, while concentrations higher than 1 gL(-1) for Tween 80 and Citrate did not produce any significant effect on the desorption efficiency. p-Cresol extraction efficiencies higher than 70% and 60% for Tween 80 and Citrate, respectively.


Toxicology | 2003

Effects of lead administration at low doses by different routes on rat spleens. Study of response of splenic lymphocytes and tissue lysozyme

César Teijón; Rosa Olmo; M.D. Blanco; Arturo Romero; José M. Teijón

The aim of this study was to evaluate the effects of low doses of lead (200 ppm of PbAc(2) for 4 weeks) on rat spleens using different routes of administration. The study has been carried out at different levels: a histological evaluation has been made, and alterations of cell proliferation, B and T lymphocyte subpopulations, and CD4(+) and CD8(+) T cell subpopulations have been evaluated. Apoptosis and necrosis of lymphoid cells were also analysed. Furthermore, lysozyme activity was measured. Results indicate a large increase in spleen size when lead is administered by intraperitoneal injection, being this route in which lead causes larger modifications in all of the parameters measured. Lead administered orally causes histological modifications, such as an increase in the number of lymphocytes as well as edema. However, significant alterations in other parameters studied have not been detected. Lead administration by intraperitoneal route causes more evident histological modifications as well as an increase in the number of lymphocytes, and also induces a decrease in the percentage of B(+), T(+) and CD4(+) cells, and an increase in CD8(+) cells. Cell death of splenic lymphocytes is not altered by lead. With regard to the immune innate response, lead behaves as an immunomodulator as can be deduced from data on lysozyme activity in tissue. Therefore, it is possible to affirm that the effect of low doses of lead depends on the route of administration. Thus, the intraperitoneal route, through which lead goes directly to the bloodstream, causes drastic effects, generating important immunological alterations.


Science of The Total Environment | 2016

Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water

Aurora Santos; Sergio Rodríguez; Fernando Pardo; Arturo Romero

Perfluorinated compounds (PFCs) are receiving significant attention due to its global distribution, high persistence, and bioaccumulation properties. Among them, perfluorooctanoic acid (PFOA) is one of the most commonly found in the environment. The strong bond C-F in PFOA is extremely difficult to degrade, therefore advanced oxidation processes (AOPs) at room temperature and pressure are not able to oxidize them, as was noticed here using Fenton like reagent (FR) or persulfate (PS) at 25°C. On the contrary, by using persulfate activated by heat (100mM and T=70°C) a complete defluorination of PFOA 0.1mM was noticed after 18h, with a sequential degradation mechanism of losing one CF2 unit from PFOA and its intermediates (perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPA) and perfluorobutanoic acid (PFBA)). Since this thermal treatment is not usually desirable from an economical point of view, alternative process has been tested. For this scope, a hybrid process is proposed in this work, by adding humic acid, HA, (600mgL(-1)) and FR, (165mM in H2O2 and 3mM in Fe(3+)) to the 0.1mM PFOA solution. It was found that the HA was oxidized by FR. PFOA was entrapped quantitatively and irreversibly during HA oxidation, resulting PFOA non-available to the aqueous phase. Oxidized HA with PFOA entrapped precipitates. Both, the leftover Fe(III) acting as a coagulant and neutral pH enhance the separation of this solid phase. The precipitation noticed by adding HA to the PFOA solution in absence of FR was negligible.


Water Air and Soil Pollution | 2013

Soil-Washing Effluent Treatment by Selective Adsorption of Toxic Organic Contaminants on Activated Carbon

Juana María Rosas; Aurora Santos; Arturo Romero

The recovery of Tween 80 from a liquid residue, obtained after washing of a contaminated soil with p-Cresol, was studied by selective adsorption of p-Cresol with activated carbons. A modified expression of the Langmuir equation was succesfully used to predict the adsorption isotherms of p-Cresol in the absence and presence of different surfactant concentrations. The presence of surfactant seems to modify the adsorption equilibrium, but it does not produce any significant influence on the adsorption kinetic of p-Cresol. A mathematical model was developed to predict the optimum activated carbon dosage demanded to reduce the p-Cresol concentration as a function of the surfactant concentration, also obtaining the corresponding surfactant loss. The regenerated solution was favorably used as washing solution in a new contaminated soil. These results indicate that this technique can be adequate to recover the surfactant solution, with a relatively minimal loss, for a subsequent application.


Science of The Total Environment | 2016

Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: A column study

Fernando Pardo; Aurora Santos; Arturo Romero

Remediation of contaminated soils under flow-through conditions is an issue of great interest since it provides a better approach to real case applications than batch experiments. In this work, a column filled with soil, artificially spiked and aged for three months with Phenanthrene (PHE), Anthracene (ANT), Pyrene (PYR) and Benzo(a)pyrene (BaP), was treated for 25days with persulfate (PS) activated by Fe(3+) and nanoparticles of zerovalent iron (nZVI). Effects of type of iron fed into the column (Fe(3+) or nZVI) and nZVI concentration were studied. PS inlet concentration was 0.2mmolcm(-3) and residence time in the column was close to 1.72days. Iron, PS and polycyclic aromatic hydrocarbons (PAHs) concentration, as well as pH, were monitored during treatment. Concentration profiles of iron and PAHs were observed along the column, with higher iron concentrations and higher PAHs removal efficiencies in the closest sections to the column entrance. BaP and ANT were completely depleted regardless the conditions used, but PHE and PYR showed higher resistance to oxidation, achieving near a 90% removal in the closest sections to the injection source in all runs, but decreasing significantly with column length. Besides, natural degradation of ANT resulted in the formation 9.10-anthraquinone (ATQ), an oxy-PAH which showed higher resistance than PHE and PYR. Although higher PAHs removal efficiencies were achieved when nZVI was used as activator, only a moderate improvement was noticed when the highest concentration of nZVI was used as a consequence of radical scavenging by an excess of Fe(2+). Finally, a kinetic model based on runs performed in batch, from a previous work, was able to predict the experimental average concentrations of PAHs in the column when Fe(3+) was used as activator.


Water Research | 2018

Lindane degradation by electrooxidation process: Effect of electrode materials on oxidation and mineralization kinetics

Carmen M. Dominguez; Nihal Oturan; Arturo Romero; Aurora Santos; Mehmet A. Oturan

This study focuses on the effect of electrode materials on abatement of lindane (an organochlorine pesticide) by electrooxidation process. Comparative performances of different anodic (platinum (Pt), dimensionally stable anode (DSA) and boron-doped diamond (BDD)) and cathodic (carbon sponge (CS), carbon felt (CF) and stainless steel (SS)) materials on lindane electrooxidation and mineralization were investigated. Special attention was paid to determine the role of chlorine active species during the electrooxidation process. The results showed that better performances were obtained when using a BDD anode and CF cathode cell. The influence of the current density was assessed to optimize the oxidation of lindane and the mineralization of its aqueous solution. A quick (10 min) and complete oxidation of 10 mg L-1 lindane solution and relatively high mineralization degree (80% TOC removal) at 4 h electrolysis were achieved at 8.33 mA cm-2 current density. Lindane was quickly oxidized by in-situ generated hydroxyl radicals, (M(•OH)), formed from oxidation of water on the anode (M) surface following pseudo first-order reaction kinetics. Formation of chlorinated and hydroxylated intermediates and carboxylic acids during the treatment were identified and a plausible mineralization pathway of lindane by hydroxyl radicals was proposed.

Collaboration


Dive into the Arturo Romero's collaboration.

Top Co-Authors

Avatar

Aurora Santos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Sergio Rodríguez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

David Lorenzo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Fernando Vicente

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Juana María Rosas

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Ernesto Simón

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Fernando Pardo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Pedro Yustos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Felix Garcia-Ochoa

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Carmen Dominguez

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge