Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arumugam Rajavelu is active.

Publication


Featured researches published by Arumugam Rajavelu.


Journal of Biological Chemistry | 2010

THE DNMT3A PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation

Arunkumar Dhayalan; Arumugam Rajavelu; Philipp Rathert; Raluca Tamas; Renata Z. Jurkowska; Sergey Ragozin; Albert Jeltsch

The Dnmt3a DNA methyltransferase contains in its N-terminal part a PWWP domain that is involved in chromatin targeting. Here, we have investigated the interaction of the PWWP domain with modified histone tails using peptide arrays and show that it specifically recognizes the histone 3 lysine 36 trimethylation mark. H3K36me3 is known to be a repressive modification correlated with DNA methylation in mammals and heterochromatin in Schizosaccharomyces pombe. These results were confirmed by equilibrium peptide binding studies and pulldown experiments with native histones and purified native nucleosomes. The PWWP-H3K36me3 interaction is important for the subnuclear localization of enhanced yellow fluorescent protein-fused Dnmt3a. Furthermore, the PWWP-H3K36me3 interaction increases the activity of Dnmt3a for methylation of nucleosomal DNA as observed using native nucleosomes isolated from human cells after demethylation of the DNA with 5-aza-2′-deoxycytidine as substrate for methylation with Dnmt3a. These data suggest that the interaction of the PWWP domain with H3K36me3 is involved in targeting of Dnmt3a to chromatin carrying that mark, a model that is in agreement with several studies on the genome-wide distribution of DNA methylation and H3K36me3.


Nucleic Acids Research | 2010

Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail

Yingying Zhang; Renata Z. Jurkowska; Szabolcs Soeroes; Arumugam Rajavelu; Arunkumar Dhayalan; Ina Bock; Philipp Rathert; Ole Brandt; Richard Reinhardt; Wolfgang Fischle; Albert Jeltsch

Using peptide arrays and binding to native histone proteins, we show that the ADD domain of Dnmt3a specifically interacts with the H3 histone 1–19 tail. Binding is disrupted by di- and trimethylation of K4, phosphorylation of T3, S10 or T11 and acetylation of K4. We did not observe binding to the H4 1–19 tail. The ADD domain of Dnmt3b shows the same binding specificity, suggesting that the distinct biological functions of both enzymes are not related to their ADD domains. To establish a functional role of the ADD domain binding to unmodified H3 tails, we analyzed the DNA methylation of in vitro reconstituted chromatin with Dnmt3a2, the Dnmt3a2/Dnmt3L complex, and the catalytic domain of Dnmt3a. All Dnmt3a complexes preferentially methylated linker DNA regions. Chromatin substrates with unmodified H3 tail or with H3K9me3 modification were methylated more efficiently by full-length Dnmt3a and full-length Dnmt3a/3L complexes than chromatin trimethylated at H3K4. In contrast, the catalytic domain of Dnmt3a was not affected by the H3K4me3 modification. These results demonstrate that the binding of the ADD domain to H3 tails unmethylated at K4 leads to the preferential methylation of DNA bound to chromatin with this modification state. Our in vitro results recapitulate DNA methylation patterns observed in genome-wide DNA methylation studies.


Journal of Molecular Biology | 2013

Targeted Methylation and Gene Silencing of VEGF-A in Human Cells by Using a Designed Dnmt3a–Dnmt3L Single-Chain Fusion Protein with Increased DNA Methylation Activity

Abu Nasar Siddique; Suneetha Nunna; Arumugam Rajavelu; Yingying Zhang; Renata Z. Jurkowska; Richard Reinhardt; Marianne G. Rots; Sergey Ragozin; Tomasz P. Jurkowski; Albert Jeltsch

The C-terminal domain of the Dnmt3a de novo DNA methyltransferase (Dnmt3a-C) forms a complex with the C-terminal domain of Dnmt3L, which stimulates its catalytic activity. We generated and characterized single-chain (sc) fusion proteins of both these domains with linker lengths between 16 and 30 amino acid residues. The purified sc proteins showed about 10-fold higher DNA methylation activities than Dnmt3a-C in vitro and were more active in bacterial cells as well. After fusing the Dnmt3a-3L sc enzyme to an artificial zinc-finger protein targeting the vascular endothelial cell growth factor A (VEGF-A) promoter, we demonstrate successful targeting of DNA methylation to the VEGF-A promoter in human cells and observed that almost complete methylation of 12 CpG sites in the gene promoter could be achieved. Targeted methylation by the Dnmt3a-3L sc enzymes was about twofold higher than that of Dnmt3a-C, indicating that Dnmt3a-3L sc variants are more efficient as catalytic modules in chimeric DNA methyltransfeases than Dnmt3a-C. Targeted methylation of the VEGF-A promoter with the Dnmt3a-3L sc variant led to a strong silencing of VEGF-A expression, indicating that the artificial DNA methylation of an endogenous promoter is a powerful strategy to achieve silencing of the corresponding gene in human cells.


Journal of Biological Chemistry | 2011

Oligomerization and Binding of the Dnmt3a DNA Methyltransferase to Parallel DNA Molecules: HETEROCHROMATIC LOCALIZATION AND ROLE OF Dnmt3L

Renata Z. Jurkowska; Arumugam Rajavelu; Nils Anspach; Claus Urbanke; Gytis Jankevicius; Sergey Ragozin; Wolfgang Nellen; Albert Jeltsch

Structural studies showed that Dnmt3a has two interfaces for protein-protein interaction in the heterotetrameric Dnmt3a/3L C-terminal domain complex: the RD interface (mediating the Dnmt3a-3a contact) and the FF interface (mediating the Dnmt3a-3L contact). Here, we demonstrate that Dnmt3a-C forms dimers via the FF interface as well, which further oligomerize via their RD interfaces. Each RD interface of the Dnmt3a-C oligomer creates an independent DNA binding site, which allows for binding of separate DNA molecules oriented in parallel. Because Dnmt3L does not have an RD interface, it prevents Dnmt3a oligomerization and binding of more than one DNA molecule. Both interfaces of Dnmt3a are necessary for the heterochromatic localization of the enzyme in cells. Overexpression of Dnmt3L in cells leads to the release of Dnmt3a from heterochromatic regions, which may increase its activity for methylation of euchromatic targets like the differentially methylated regions involved in imprinting.


Journal of Medicinal Chemistry | 2014

Synthesis and Evaluation of Analogues of N-Phthaloyl-l-tryptophan (RG108) as Inhibitors of DNA Methyltransferase 1

Saâdia Asgatay; Christine Champion; Gaël Marloie; Thierry Drujon; Catherine Senamaud-Beaufort; Alexandre Ceccaldi; Alexandre Erdmann; Arumugam Rajavelu; Philippe Schambel; Albert Jeltsch; Olivier Lequin; Philippe Karoyan; Paola B. Arimondo; Dominique Guianvarc’h

DNA methyltransferases (DNMT) are promising drug targets in cancer provided that new, more specific, and chemically stable inhibitors are discovered. Among the non-nucleoside DNMT inhibitors, N-phthaloyl-l-tryptophan 1 (RG108) was first identified as inhibitor of DNMT1. Here, 1 analogues were synthesized to understand its interaction with DNMT. The indole, carboxylate, and phthalimide moieties were modified. Homologated and conformationally constrained analogues were prepared. The latter were synthesized from prolinohomotryptophan derivatives through a methodology based amino-zinc-ene-enolate cyclization. All compounds were tested for their ability to inhibit DNMT1 in vitro. Among them, constrained compounds 16-18 and NPys derivatives 10-11 were found to be at least 10-fold more potent than the reference compound. The cytotoxicity on the tumor DU145 cell line of the most potent inhibitors was correlated to their inhibitory potency. Finally, docking studies were conducted in order to understand their binding mode. This study provides insights for the design of the next-generation of DNMT inhibitors.


ChemBioChem | 2011

C5-DNA Methyltransferase Inhibitors: From Screening to Effects on Zebrafish Embryo Development

Alexandre Ceccaldi; Arumugam Rajavelu; Christine Champion; Christine Rampon; Renata Z. Jurkowska; Gytis Jankevicius; Catherine Senamaud-Beaufort; Loïc Ponger; Nathalie Gagey; Hana Dali Ali; Jörg Tost; Sophie Vriz; Sindu Ros; Daniel Dauzonne; Albert Jeltsch; Dominique Guianvarc'h; Paola B. Arimondo

DNA methylation is involved in the regulation of gene expression and plays an important role in normal developmental processes and diseases, such as cancer. DNA methyltransferases are the enzymes responsible for DNA methylation on the position 5 of cytidine in a CpG context. In order to identify and characterize novel inhibitors of these enzymes, we developed a fluorescence‐based throughput screening by using a short DNA duplex immobilized on 96‐well plates. We have screened 114 flavones and flavanones for the inhibition of the murine catalytic Dnmt3a/3L complex and found 36 hits with IC50 values in the lower micromolar and high nanomolar ranges. The assay, together with inhibition tests on two other methyltransferases, structure–activity relationships and docking studies, gave insights on the mechanism of inhibition. Finally, two derivatives effected zebrafish embryo development, and induced a global demethylation of the genome, at doses lower than the control drug, 5‐azacytidine.


ACS Chemical Biology | 2013

Identification of novel inhibitors of DNA methylation by screening of a chemical library.

Alexandre Ceccaldi; Arumugam Rajavelu; Sergey Ragozin; Catherine Senamaud-Beaufort; Pavel Bashtrykov; Noé Testa; Hana Dali-Ali; Christine Maulay-Bailly; Séverine Amand; Dominique Guianvarc’h; Albert Jeltsch; Paola B. Arimondo

In order to discover new inhibitors of the DNA methyltransferase 3A/3L complex, we used a medium-throughput nonradioactive screen on a random collection of 1120 small organic compounds. After a primary hit detection against DNA methylation activity of the murine Dnmt3A/3L catalytic complex, we further evaluated the EC50 of the 12 most potent hits as well as their cytotoxicity on DU145 prostate cancer cultured cells. Interestingly, most of the inhibitors showed low micromolar activities and little cytotoxicity. Dichlone, a small halogenated naphthoquinone, classically used as pesticide and fungicide, showed the lowest EC50 at 460 nM. We briefly assessed the selectivity of a subset of our new inhibitors against hDNMT1 and bacterial Dnmts, including M. SssI and EcoDam, and the protein lysine methyltransferase PKMT G9a and the mode of inhibition. Globally, the tested molecules showed a clear preference for the DNA methyltransferases, but poor selectivity among them. Two molecules including Dichlone efficiently reactivated YFP gene expression in a stable HEK293 cell line by promoter demethylation. Their efficacy was comparable to the DNMT inhibitor of reference 5-azacytidine.


ChemBioChem | 2012

Rapid Synthesis of New DNMT Inhibitors Derivatives of Procainamide

Ludovic Halby; Christine Champion; Catherine Senamaud-Beaufort; Sophie Ajjan; Thierry Drujon; Arumugam Rajavelu; Alexandre Ceccaldi; Renata Z. Jurkowska; Olivier Lequin; William G. Nelson; Alain Guy; Albert Jeltsch; Dominique Guianvarc'h; Clotilde Ferroud; Paola B. Arimondo

DNA methyltransferases (DNMTs) are responsible for DNA methylation, an epigenetic modification involved in gene regulation. Families of conjugates of procainamide, an inhibitor of DNMT1, were conceived and produced by rapid synthetic pathways. Six compounds resulted in potent inhibitors of the murine catalytic Dnmt3A/3L complex and of human DNMT1, at least 50 times greater than that of the parent compounds. The inhibitors showed selectivity for C5 DNA methyltransferases. The cytotoxicity of the inhibitors was validated on two tumour cell lines (DU145 and HCT116) and correlated with the DNMT inhibitory potency. The inhibition potency of procainamide conjugated to phthalimide through alkyl linkers depended on the length of the linker; the dodecane linker was the best.


BMC Biochemistry | 2011

The inhibition of the mammalian DNA methyltransferase 3a (Dnmt3a) by dietary black tea and coffee polyphenols

Arumugam Rajavelu; Zumrad Tulyasheva; Rakesh Jaiswal; Albert Jeltsch; Nikolai Kuhnert

BackgroundBlack tea is, second only to water, the most consumed beverage globally. Previously, the inhibition of DNA methyltransferase 1 was shown by dietary polyphenols and epi-gallocatechin gallate (EGCG), the main polyphenolic constituent of green tea, and 5-caffeoyl quinic acid, the main phenolic constituent of the green coffee bean.ResultsWe studied the inhibition of DNA methyltransferase 3a by a series of dietary polyphenols from black tea such as theaflavins and thearubigins and chlorogenic acid derivatives from coffee. For theaflavin 3,3 digallate and thearubigins IC50 values in the lower micro molar range were observed, which when compared to pharmacokinetic data available, suggest an effect of physiological relevance.ConclusionsSince Dnnmt3a has been associated with development, cancer and brain function, these data suggest a biochemical mechanism for the beneficial health effect of black tea and coffee and a possible molecular mechanism for the improvement of brain performance and mental health by dietary polyphenols.


Nucleic Acids Research | 2012

Function and disruption of DNA Methyltransferase 3a cooperative DNA binding and nucleoprotein filament formation

Arumugam Rajavelu; Renata Z. Jurkowska; Jürgen Fritz; Albert Jeltsch

The catalytic domain of Dnmt3a cooperatively multimerizes on DNA forming nucleoprotein filaments. Based on modeling, we identified the interface of Dnmt3a complexes binding next to each other on the DNA and disrupted it by charge reversal of critical residues. This prevented cooperative DNA binding and multimerization of Dnmt3a on the DNA, as shown by the loss of cooperative complex formation in electrophoretic mobility shift assay, the loss of cooperativity in DNA binding in solution, the loss of a characteristic 8- to 10-bp periodicity in DNA methylation and direct imaging of protein–DNA complexes by scanning force microscopy. Non-cooperative Dnmt3a-C variants bound DNA well and retained methylation activity, indicating that cooperative DNA binding and multimerization of Dnmt3a on the DNA are not required for activity. However, one non-cooperative variant showed reduced heterochromatic localization in mammalian cells. We propose two roles of Dnmt3a cooperative DNA binding in the cell: (i) either nucleofilament formation could be required for periodic DNA methylation or (ii) favorable interactions between Dnmt3a complexes may be needed for the tight packing of Dnmt3a at heterochromatic regions. The complex interface optimized for tight packing would then promote the cooperative binding of Dnmt3a to naked DNA in vitro.

Collaboration


Dive into the Arumugam Rajavelu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola B. Arimondo

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max Emperle

University of Stuttgart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gayathri Govindaraju

Rajiv Gandhi Centre for Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge