Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arun Asok is active.

Publication


Featured researches published by Arun Asok.


Behavioural Brain Research | 2013

Immediate early gene and neuropeptide expression following exposure to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT)

Arun Asok; Luke W. Ayers; Bisola Awoyemi; Jay Schulkin; Jeffrey B. Rosen

The immediate early gene c-fos and a number of neuropeptides have been widely used to help delineate the neural circuitry of innate fear to predator odors. The present study used in situ hybridization techniques to examine the expression of the immediate early gene transcription factors c-fos and egr-1, and the neuropeptides corticotropin-releasing hormone (crh) and enkephalin (enk) following exposure to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). Rats were exposed to water (H2O), TMT, or the irritating odor butyric acid (BA) and freezing was used to measure fear behavior. Changes in gene expression were analyzed in the medial prefrontal cortex (mPFC), the bed nucleus of the stria terminalis (BNST), paraventricular nucleus of the hypothalamus (PVN), and central nucleus of the amygdala (CeA). Animals froze more to TMT than BA and H2O, and more to BA than H2O. Compared to H2O and BA, c-fos and egr-1 were elevated within the BNST, PVN, and CeA in rats exposed to TMT, but not the mPFC. Crh was also elevated in rats exposed to TMT within the CeA and PVN, but not the BNST or mPFC. Enk was elevated within the PVN in TMT and BA exposed rats compared to H2O exposure. These data indicate that exposure to the predator odor TMT induces similar expression patterns for c-fos and egr-1, but different patterns for crh and enk, with partial overlap of the immediate-early genes and neuropeptides within specific brain regions.


Stress | 2015

Long-term effects of early-life caregiving experiences on brain-derived neurotrophic factor histone acetylation in the adult rat mPFC

Jennifer Blaze; Arun Asok; Tania L. Roth

Abstract Infant–caregiver experiences are major contributing factors to neural and behavioral development. Research indicates that epigenetic mechanisms provide a way in which infant–caregiver experiences affect gene activity and other downstream processes in the brain that influence behavioral development. Our laboratory previously demonstrated in a rodent model that exposure to maltreatment alters methylation of DNA associated with the brain-derived neurotrophic factor (bdnf) and reelin genes as well as mRNA of key epigenetic regulatory genes in the medial prefrontal cortex (mPFC). In the current study, we characterized patterns of histone acetylation at bdnf and reelin gene loci after our caregiver manipulations. Using a within-litter design (n = 8–10/group from eight litters), pups were exposed to adverse (maltreatment condition: exposure to a stressed caregiver) or nurturing (cross-foster condition: exposure to a nurturing caregiver) caregiving environments outside the home cage for 30 min daily during the first postnatal week. Remaining pups in a litter were left with the biological mother during each session (providing normal care controls). We then used chromatin immunoprecipitation (ChIP) and quantitative RT-PCR to measure histone 3 lysine 9/14 acetylation associated with bdnf promoters I and IV and the reelin promoter in the adult mPFC. Maltreated females had decreased acetylation at bdnf IV, while neither males nor females exhibited histone acetylation alterations at bdnf I or reelin. These data demonstrate the ability of maltreatment to have long-term consequences on histone acetylation in the mPFC, and provide further evidence of the epigenetic susceptibility of bdnf IV to the quality of infant–caregiver experiences.


Frontiers in Neuroscience | 2015

The smell of fear: innate threat of 2,5-dihydro-2,4,5-trimethylthiazoline, a single molecule component of a predator odor

Jeffrey B. Rosen; Arun Asok; Trisha Chakraborty

In the last several years, the importance of understanding what innate threat and fear is, in addition to learning of threat and fear, has become evident. Odors from predators are ecologically relevant stimuli used by prey animals as warnings for the presence of danger. Of importance, these odors are not necessarily noxious or painful, but they have innate threat-like properties. This review summarizes the progress made on the behavioral and neuroanatomical fundamentals of innate fear of the predator odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a component of fox feces. TMT is one of several single molecule components of predator odors that have been isolated in the last several years. Isolation of these single molecules has allowed for rapid advances in delineating the behavioral constraints and selective neuroanatomical pathways of predator odor induced fear. In naïve mice and rats, TMT induces a number of fear and defensive behaviors, including robust freezing, indicating it is an innate threat stimulus. However, there are a number of behavioral constraints that we do not yet understand. Similarly, while some of the early olfactory sensory pathways for TMT-induced fear are being delineated, the pathways from olfactory systems to emotional and motor output regions are less well understood. This review will focus on what we know and what we still need to learn about the behavior and neuroanatomy of TMT-induced fear.


Frontiers in Behavioral Neuroscience | 2015

The long-term impact of adverse caregiving environments on epigenetic modifications and telomeres.

Jennifer Blaze; Arun Asok; Tania L. Roth

Early childhood is a sensitive period in which infant-caregiver experiences have profound effects on brain development and behavior. Clinical studies have demonstrated that infants who experience stress and adversity in the context of caregiving are at an increased risk for the development of psychiatric disorders. Animal models have helped to elucidate some molecular substrates of these risk factors, but a complete picture of the biological basis remains unknown. Studies continue to indicate that environmentally-driven epigenetic modifications may be an important mediator between adverse caregiving environments and psychopathology. Epigenetic modifications such as DNA methylation, which normally represses gene transcription, and microRNA processing, which interferes with both transcription and translation, show long-term changes throughout the brain and body following adverse caregiving. Recent evidence has also shown that telomeres (TTAGGG nucleotide repeats that cap the ends of DNA) exhibit long-term changes in the brain and in the periphery following exposure to adverse caregiving environments. Interestingly, telomeric enzymes and subtelomeric regions are subject to epigenetic modifications—a factor which may play an important role in regulating telomere length and contribute to future mental health. This review will focus on clinical and animal studies that highlight the long-term epigenetic and telomeric changes produced by adverse caregiving in early-life.


Neurobiology of Learning and Memory | 2013

Egr-1 increases in the prefrontal cortex following training in the context preexposure facilitation effect (CPFE) paradigm

Arun Asok; William B. Schreiber; Sarah A. Jablonski; Jeffrey B. Rosen; Mark E. Stanton

The context pre-exposure facilitation effect (CPFE) is a modified form of standard contextual fear conditioning that dissociates learning about the context during a preexposure phase from learning the context-shock association during an immediate shock training phase conducted on separate days. Fear conditioning in the CPFE is an associative process in which only animals that are preexposed to the same context they are later given an immediate shock in demonstrate freezing when tested for conditioned fear memory. Previous research has shown that the hippocampus and amygdala are necessary for different phases of the CPFE, but whether other brain regions are also involved is unknown. The present study examined expression of the immediate-early gene early growth response gene 1 (Egr-1; also called Zif268, Ngfi-a, Krox-24) in the dorsal hippocampus, lateral nucleus of the amygdala, retrosplenial cortex, and several prefrontal cortex regions (infralimbic and prelimbic medial prefrontal cortex, anterior cingulate, and orbitofrontal cortex) following each phase of the CPFE in juvenile rats. Animals preexposed to the conditioning context displayed fear conditioned freezing during a retention test whereas rats preexposed to an alternate context did not. Following context preexposure, Egr-1 mRNA was elevated in context and alternate context exposed animals compared to home-cage control rats in almost all regions analyzed. Following the context-shock training phase, fear conditioned rats displayed significantly more Egr-1 mRNA expression in the infralimbic, prelimbic, and orbitofrontal cortices compared to the alternate context preexposed control rats. These differences in Egr-1 expression were not found in amygdala between the preexposed context and alternate context rats. No sex differences were observed following preexposure or training in any regions analyzed. The findings suggest that increased expression of Egr-1 within the prefrontal cortex is associated with contextual fear conditioning in the CPFE paradigm.


Behavioural Brain Research | 2013

Freezing to the predator odor 2,4,5 dihydro 2,5 trimethylthiazoline (TMT) is disrupted by olfactory bulb removal but not trigeminal deafferentation

Luke W. Ayers; Arun Asok; Frankie D. Heyward; Jeffrey B. Rosen

2,4,5 dihydro 2,5 trimethylthiazoline (TMT) is a synthesized component of red fox anal secretions that reliably elicits defensive behaviors in rats and mice. TMT differs from other predator odors because it is a single molecule, it can be synthesized in large quantities, and the dose for exposure is highly controllable in an experimental setting. TMT has become a popular tool for studying the brain mechanisms that mediate innate fear behavior to olfactory stimuli. However, this view of TMT as a biologically relevant olfactory stimulus has been challenged by suggestions that the odor elicits fear behavior due to its irritating properties, presumably working through a nociceptive mechanism. To address this criticism our lab measured freezing behavior in rats during exposures to 2 odors (TMT and butyric acid) and H2O (no odor control) following either surgical transection of the trigeminal nerves or ablation of the olfactory bulbs. Our findings (Experiment 1) indicate that freezing behavior to TMT requires an intact olfactory system, as indicated by the loss of freezing following olfactory bulb removal. Experiment 2 revealed that rats with trigeminal nerve transection freeze normally to TMT, suggesting the olfactory system mediates this behavior to TMT. A replication of Experiment 1 that included contextual fear conditioning revealed that the decreased freezing behavior was not due to an inability of olfactory bulb ablated rats to freeze (Experiment 3). Taken together, these findings support TMTs role as an ecologically relevant predator odor useful in experiments of unconditioned fear that is mediated via olfaction and not nociception.


Brain Research | 2014

Egr-1 mRNA expression patterns in the prefrontal cortex, hippocampus, and amygdala during variants of contextual fear conditioning in adolescent rats

William B. Schreiber; Arun Asok; Sarah A. Jablonski; Jeffrey B. Rosen; Mark E. Stanton

We report activation of the immediate-early gene Egr-1 in the lateral amygdala (LA), hippocampus (CA1), and medial prefrontal cortex (mPFC) 30-min following the training phase in the context pre-exposure facilitation effect (CPFE) and standard context fear conditioning (180 s context exposure→shock). On day one of the CPFE paradigm, postnatal day (PD) 31 rats (±1) were pre-exposed to Context A (Pre) or Context B (Alt-Pre) for 5 min followed by five additional 1-min exposures. A day later, Pre and Alt-Pre rats received a 2-s, 1.5 mA footshock immediately upon placement in Context A. Animals included in in situ hybridization were then sacrificed 30 (±3) min later. On day three, the behaviorally-tested Pre rats showed significantly more fear-conditioned freezing in Context A than Alt-Pre rats. Standard context fear conditioning groups showed much greater freezing than the Pre group, as well as no shock and immediate-shock controls. Thirty minutes after immediate shock training, Pre rats showed increased Egr-1 mRNA in the prelimbic mPFC relative to Alt-Pre rats. Standard context conditioning selectively increased Egr-1 in CA1. In the LA and mPFC, Egr-1 increased to a similar extent in no shock, immediate shock, and standard context conditioning relative to homecage controls. The present study demonstrates that Egr-1 mRNA expression has a complex relationship to fear learning in different brain regions and variants of context conditioning.


Behavioural Brain Research | 2016

Variants of contextual fear conditioning induce differential patterns of Egr-1 activity within the young adult prefrontal cortex

T. Chakraborty; Arun Asok; Mark E. Stanton; Jeffrey B. Rosen

Contextual fear conditioning is a form of associative learning where animals must experience a context before they can associate it with an aversive stimulus. Single-trial contextual fear conditioning (sCFC) and the context preexposure facilitation effect (CPFE) are two variants of CFC where learning about the context is temporally contiguous (sCFC) with or separated (CPFE) from receiving a footshock in that context. Neural activity within CA1 of the dorsal hippocampus (CA1), amygdala (LA), and prefrontal cortex (PFC) may play a critical role when animals learn to associate a context with a footshock (i.e., training). Previous studies from our lab have found that early-growth-response gene 1 (Egr-1), an immediate early gene, exhibits unique patterns of activity within regions of the PFC following training in sCFC and the CPFE of juvenile rats. In the present study, we extended our studies by examining Egr-1 expression in young adult rats to determine (1) if our previous work reflected changes unique to development or extend into adulthood and (2) to contrast expression profiles between sCFC and the CPFE. Rats that learned context fear with sCFC showed increased Egr-1 in the anterior cingulate, orbitofrontal and infralimbic cortices relative to non-associative controls following training, but expression in prelimbic cortex did not differ between fear conditioned and non-associative controls. In contrast, rats trained in the CPFE also showed increased Egr-1 in all the prefrontal cortex regions, including prelimbic cortex. These findings replicate our previous findings in juveniles and suggest that Egr-1 in specific PFC subregions may be uniquely involved in learning context-fear in the CPFE compared to sCFC.


PLOS ONE | 2014

Infant-caregiver experiences alter telomere length in the brain.

Arun Asok; Kristin Bernard; Jeffrey B. Rosen; Mary Dozier; Tania L. Roth

Following adverse childhood experiences, high quality maternal care can protect against accelerated telomere shortening in peripheral cells. It is less clear, however, how telomere length in the brain is influenced by early caregiving experiences. Using rats, we investigated if quality of care (i.e., aversive or nurturing care outside of the homecage) during the first seven days of postnatal (PN) life affected telomere length in the adult brain (PN90) of male and female rats. At PN90, we found that nurturing care outside of the homecage was associated with longer telomeres in the medial prefrontal cortex relative to nurturing care inside the homecage (i.e., normal maternal care) and aversive care outside of the homecage. Further, pups exposed to aversive care outside of the homecage demonstrated longer telomeres in the amygdala relative to pups exposed to nurturing care inside the homecage. These effects were specific to females. No differences in telomere length between caregiving conditions were observed in the ventral hippocampus. Thus, positive and negative early-life experiences result in long-term, sex-specific changes of telomeres in the brain.


Psychoneuroendocrinology | 2016

Corticotropin releasing factor type-1 receptor antagonism in the dorsolateral bed nucleus of the stria terminalis disrupts contextually conditioned fear, but not unconditioned fear to a predator odor

Arun Asok; Jay Schulkin; Jeffrey B. Rosen

The bed nucleus of the stria terminalis (BNST) plays a critical role in fear and anxiety. The BNST is important for contextual fear learning, but the mechanisms regulating this function remain unclear. One candidate mechanism is corticotropin-releasing-factor (CRF) acting at CRF type 1 receptors (CRFr1s). Yet, there has been little progress in elucidating if CRFr1s in the BNST are involved in different types of fear (conditioned and/or unconditioned). Therefore, the present study investigated the effect of antalarmin, a potent CRFr1 receptor antagonist, injected intracerebroventricularly (ICV) and into the dorsolateral BNST (LBNST) during single trial contextual fear conditioning or exposure to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). Neither ICV nor LBNST antalarmin disrupted unconditioned freezing to TMT. In contrast, ICV and LBNST antalarmin disrupted the retention of contextual fear when tested 24h later. Neither ICV nor LBNST antalarmin affected baseline or post-shock freezing-indicating antalarmin does not interfere with the early phases of contextual fear acquisition. Antalarmin did not (1) permanently affect the ability to learn and express contextual fear, (2) change responsivity to footshocks, or (3) affect the ability to freeze. Our findings highlight an important role for CRFr1s within the LBNST during contextually conditioned fear, but not unconditioned predator odor fear.

Collaboration


Dive into the Arun Asok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge