Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arun Gupta is active.

Publication


Featured researches published by Arun Gupta.


Oncogene | 2003

hTERT associates with human telomeres and enhances genomic stability and DNA repair

Girdhar G. Sharma; Arun Gupta; Huichen Wang; Harry Scherthan; Sonu Dhar; Varsha Gandhi; George Iliakis; Jerry W. Shay; Charles S. H. Young; Tej K. Pandita

Ectopic expression of telomerase in telomerase-silent cells is sufficient to overcome senescence and to extend cellular lifespan. We show here that the catalytic subunit of human telomerase (hTERT) crosslinks telomeres. This interaction is blocked by the telomere repeat binding factor 1, but not by a dominant negative form of this protein. It is also abolished by destruction of the RNA component of telomerase as well as by mutations in the hTERT protein. Ectopic expression of hTERT leads to transcriptional alterations of a subset of genes and changes in the interaction of the telomeres with the nuclear matrix. This is associated with reduction of spontaneous chromosome damage in G1 cells, enhancement of the kinetics of DNA repair and an increase in NTP levels. The effect on DNA repair is likely indirect as TERT does not directly affect DNA end rejoining in vitro or meiotic recombination in vivo. The observed effects of hTERT occurred rapidly before any significant lengthening of telomeres was observed. Our findings establish an intimate relationship between hTERT–telomere interactions and alteration in transcription of a subset of genes that may lead to increased genomic stability and enhanced repair of genetic damage. These novel functions of telomerase are distinct from its known effect on telomere length and have potentially important biological consequences.


Molecular and Cellular Biology | 2005

Involvement of human MOF in ATM function

Arun Gupta; Girdhar G. Sharma; Charles S. H. Young; Manjula Agarwal; Edwin R. Smith; Tanya T. Paull; John C. Lucchesi; Kum Kum Khanna; Thomas Ludwig; Tej K. Pandita

ABSTRACT We have determined that hMOF, the human ortholog of the Drosophila MOF gene (males absent on the first), encoding a protein with histone acetyltransferase activity, interacts with the ATM (ataxia-telangiectasia-mutated) protein. Cellular exposure to ionizing radiation (IR) enhances hMOF-dependent acetylation of its target substrate, lysine 16 (K16) of histone H4 independently of ATM function. Blocking the IR-induced increase in acetylation of histone H4 at K16, either by the expression of a dominant negative mutant ΔhMOF or by RNA interference-mediated hMOF knockdown, resulted in decreased ATM autophosphorylation, ATM kinase activity, and the phosphorylation of downstream effectors of ATM and DNA repair while increasing cell killing. In addition, decreased hMOF activity was associated with loss of the cell cycle checkpoint response to DNA double-strand breaks. The overexpression of wild-type hMOF yielded the opposite results, i.e., a modest increase in cell survival and enhanced DNA repair after IR exposure. These results suggest that hMOF influences the function of ATM.


Molecular and Cellular Biology | 2010

MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double- strand break repair

Girdhar G. Sharma; Sairei So; Arun Gupta; Rakesh K. Kumar; Christelle Cayrou; Nikita Avvakumov; Utpal Bhadra; Raj K. Pandita; Matthew H. Porteus; David J. Chen; Jacques Côté; Tej K. Pandita

ABSTRACT The human MOF gene encodes a protein that specifically acetylates histone H4 at lysine 16 (H4K16ac). Here we show that reduced levels of H4K16ac correlate with a defective DNA damage response (DDR) and double-strand break (DSB) repair to ionizing radiation (IR). The defect, however, is not due to altered expression of proteins involved in DDR. Abrogation of IR-induced DDR by MOF depletion is inhibited by blocking H4K16ac deacetylation. MOF was found to be associated with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a protein involved in nonhomologous end-joining (NHEJ) repair. ATM-dependent IR-induced phosphorylation of DNA-PKcs was also abrogated in MOF-depleted cells. Our data indicate that MOF depletion greatly decreased DNA double-strand break repair by both NHEJ and homologous recombination (HR). In addition, MOF activity was associated with general chromatin upon DNA damage and colocalized with the synaptonemal complex in male meiocytes. We propose that MOF, through H4K16ac (histone code), has a critical role at multiple stages in the cellular DNA damage response and DSB repair.


Molecular and Cellular Biology | 2004

Genomic Instability and Enhanced Radiosensitivity in Hsp70.1-and Hsp70.3 -Deficient Mice

Clayton R. Hunt; David J. Dix; Girdhar G. Sharma; Raj K. Pandita; Arun Gupta; Margo C. Funk; Tej K. Pandita

ABSTRACT Heat shock proteins (HSPs) are highly conserved among all organisms from prokaryotes to eukaryotes. In mice, the HSP genes Hsp70.1 and Hsp70.3 are induced by both endogenous and exogenous stressors, such as heat and toxicants. In order to determine whether such proteins specifically influence genomic instability, mice deficient for Hsp70.1 and Hsp70.3 (Hsp70.1/3−/− mice) were generated by gene targeting. Mouse embryonic fibroblasts (MEFs) prepared from Hsp70.1/3−/− mice did not synthesize Hsp70.1 or Hsp70.3 after heat-induced stress. While the Hsp70.1/3−/− mutant mice were fertile, their cells displayed genomic instability that was enhanced by heat treatment. Cells from Hsp70.1/3−/− mice also display a higher frequency of chromosome end-to-end associations than do control Hsp70.1/3+/+ cells. To determine whether observed genomic instability was related to defective chromosome repair, Hsp70.1/3−/− and Hsp70.1/3+/+ fibroblasts were treated with ionizing radiation (IR) alone or heat and IR. Exposure to IR led to more residual chromosome aberrations, radioresistant DNA synthesis (a hallmark of genomic instability), increased cell killing, and enhanced IR-induced oncogenic transformation in Hsp70.1/3−/− cells. Heat treatment prior to IR exposure enhanced cell killing, S-phase-specific chromosome damage, and the frequency of transformants in Hsp70.1/3−/− cells in comparison to Hsp70.1/3+/+ cells. Both in vivo and in vitro studies demonstrate for the first time that Hsp70.1 and Hsp70.3 have an essential role in maintaining genomic stability under stress conditions.


Molecular and Cellular Biology | 2008

The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis.

Arun Gupta; T. Geraldine Guerin-Peyrou; Girdhar G. Sharma; Changwon Park; Manjula Agarwal; Ramesh K. Ganju; Shruti Pandita; Kyunghee Choi; Saraswati Sukumar; Raj K. Pandita; Thomas Ludwig; Tej K. Pandita

ABSTRACT The mammalian ortholog of the Drosophila MOF (males absent on the first) gene product is a histone H4 lysine 16-specific acetyltransferase. Recent studies have shown that depletion of human MOF (hMOF) in human cell lines leads to genomic instability, spontaneous chromosomal aberrations, cell cycle defects, altered nuclear morphology, reduced transcription of certain genes, and defective DNA damage response to ionizing radiation (IR). Here we show that MOF plays an essential role in mammals during embryogenesis and oncogenesis. Ablation of the mouse Mof gene (mMof) by gene targeting resulted in early embryonic lethality and cell death. Lethality correlated with the loss of H4 lysine 16 acetylation (H4K16ac) and could not be rescued by concomitant inactivation of ATM or p53. In comparison to primary cells or normal tissue, all immortalized human normal and tumor cell lines and primary tumors demonstrated similar or elevated hMOF and H4K16ac levels. Accordingly, MOF overexpression correlated with increased cellular proliferation, oncogenic transformation, and tumor growth. Thus, these data reveal that the acetylation of histone H4 at K16 by MOF is an epigenetic signature of cellular proliferation common to both embryogenesis and oncogenesis and that MOF is an essential factor for embryogenesis and oncogenesis.


Cancer Research | 2007

Hyperthermia Activates a Subset of Ataxia-Telangiectasia Mutated Effectors Independent of DNA Strand Breaks and Heat Shock Protein 70 Status

Clayton R. Hunt; Raj K. Pandita; Andrei Laszlo; Manjula Agarwal; Tetsuya Kitamura; Arun Gupta; Nicole Rief; Nobuo Horikoshi; Rajeskaran Baskaran; Ji-Hoon Lee; Markus Löbrich; Tanya T. Paull; Joseph L. Roti Roti; Tej K. Pandita

All cells have intricately coupled sensing and signaling mechanisms that regulate the cellular outcome following exposure to genotoxic agents such as ionizing radiation (IR). In the IR-induced signaling pathway, specific protein events, such as ataxia-telangiectasia mutated protein (ATM) activation and histone H2AX phosphorylation (gamma-H2AX), are mechanistically well characterized. How these mechanisms can be altered, especially by clinically relevant agents, is not clear. Here we show that hyperthermia, an effective radiosensitizer, can induce several steps associated with IR signaling in cells. Hyperthermia induces gamma-H2AX foci formation similar to foci formed in response to IR exposure, and heat-induced gamma-H2AX foci formation is dependent on ATM but independent of heat shock protein 70 expression. Hyperthermia also enhanced ATM kinase activity and increased cellular ATM autophosphorylation. The hyperthermia-induced increase in ATM phosphorylation was independent of Mre11 function. Similar to IR, hyperthermia also induced MDC1 foci formation; however, it did not induce all of the characteristic signals associated with irradiation because formation of 53BP1 and SMC1 foci was not observed in heated cells but occurred in irradiated cells. Additionally, induction of chromosomal DNA strand breaks was observed in IR-exposed but not in heated cells. These results indicate that hyperthermia activates signaling pathways that overlap with those activated by IR-induced DNA damage. Moreover, prior activation of ATM or other components of the IR-induced signaling pathway by heat may interfere with the normal IR-induced signaling required for chromosomal DNA double-strand break repair, thus resulting in increased cellular radiosensitivity.


Molecular and Cellular Biology | 2006

Mammalian Rad9 Plays a Role in Telomere Stability, S- and G2-Phase-Specific Cell Survival, and Homologous Recombinational Repair

Raj K. Pandita; Girdhar G. Sharma; Andrei Laszlo; Kevin M. Hopkins; Scott Davey; Mikhail Chakhparonian; Arun Gupta; Raymund J. Wellinger; Junran Zhang; Simon N. Powell; Joseph L. Roti Roti; Howard B. Lieberman; Tej K. Pandita

ABSTRACT The protein products of several rad checkpoint genes of Schizosaccharomyces pombe (rad1+, rad3 +, rad9 +, rad17 +, rad26 +, and hus1 +) play crucial roles in sensing changes in DNA structure, and several function in the maintenance of telomeres. When the mammalian homologue of S. pombe Rad9 was inactivated, increases in chromosome end-to-end associations and frequency of telomere loss were observed. This telomere instability correlated with enhanced S- and G2-phase-specific cell killing, delayed kinetics of γ-H2AX focus appearance and disappearance, and reduced chromosomal repair after ionizing radiation (IR) exposure, suggesting that Rad9 plays a role in cell cycle phase-specific DNA damage repair. Furthermore, mammalian Rad9 interacted with Rad51, and inactivation of mammalian Rad9 also resulted in decreased homologous recombinational (HR) repair, which occurs predominantly in the S and G2 phases of the cell cycle. Together, these findings provide evidence of roles for mammalian Rad9 in telomere stability and HR repair as a mechanism for promoting cell survival after IR exposure.


Molecular and Cellular Biology | 2003

Human Heterochromatin Protein 1 Isoforms HP1Hsα and HP1Hsβ Interfere with hTERT-Telomere Interactions and Correlate with Changes in Cell Growth and Response to Ionizing Radiation

Girdhar G. Sharma; Kyu Kye Hwang; Raj K. Pandita; Arun Gupta; Sonu Dhar; Julie Parenteau; Manjula Agarwal; Howard J. Worman; Raymund J. Wellinger; Tej K. Pandita

ABSTRACT Telomeres are associated with the nuclear matrix and are thought to be heterochromatic. We show here that in human cells the overexpression of green fluorescent protein-tagged heterochromatin protein 1 (GFP-HP1) or nontagged HP1 isoforms HP1Hsα or HP1Hsβ, but not HP1Hsγ, results in decreased association of a catalytic unit of telomerase (hTERT) with telomeres. However, reduction of the G overhangs and overall telomere sizes was found in cells overexpressing any of these three proteins. Cells overexpressing HP1Hsα or HP1Hsβ also display a higher frequency of chromosome end-to-end associations and spontaneous chromosomal damage than the parental cells. None of these effects were observed in cells expressing mutants of GFP-ΔHP1Hsα, GFP-ΔHP1Hsβ, or GFP-ΔHP1Hsγ that had their chromodomains deleted. An increase in the cell population doubling time and higher sensitivity to cell killing by ionizing radiation (IR) treatment was also observed for cells overexpressing HP1Hsα or HP1Hsβ. In contrast, cells expressing mutant GFP-ΔHP1Hsα or GFP-ΔHP1Hsβ showed a decrease in population doubling time and decreased sensitivity to IR compared to the parental cells. The effects on cell doubling times were paralleled by effects on tumorigenicity in mice: overexpression of HP1Hsα or HP1Hsβ suppressed tumorigenicity, whereas expression of mutant HP1Hsα or HP1Hsβ did not. Collectively, the results show that human cells are exquisitely sensitive to the amount of HP1Hsα or HP1Hsβ present, as their overexpression influences telomere stability, population doubling time, radioresistance, and tumorigenicity in a mouse xenograft model. In addition, the isoform-specific effects on telomeres reinforce the notion that telomeres are in a heterochromatinized state.


Cell Cycle | 2009

Cell cycle checkpoint defects contribute to genomic instability in PTEN deficient cells independent of DNA DSB repair

Arun Gupta; Qin Yang; Raj K. Pandita; Clayton R. Hunt; Tao Xiang; Sandeep Misri; Sicong Zeng; Julia K. Pagan; Jessie Jeffery; Janusz Puc; Rakesh Kumar; Zhihui Feng; Simon N. Powell; Audesh Bhat; Tomoko Yaguchi; Renu Wadhwa; Sunil C. Kaul; Ramon Parsons; Kum Kum Khanna; Tej K. Pandita

Chromosomes in PTEN deficient cells display both numerical as well as structural alterations including regional amplification. We found that PTEN deficient cells displayed a normal DNA damage response (DDR) as evidenced by the ionizing radiation (IR)-induced phosphorylation of Ataxia Telangiectasia Mutated (ATM) as well as its effectors. PTEN deficient cells also had no defect in Rad51 expression or DNA damage repair kinetics post irradiation. In contrast, caffeine treatment specifically increased IR-induced chromosome aberrations and mitotic index only in cells with PTEN, and not in cells deficient for PTEN, suggesting that their checkpoints were defective. Furthermore, PTEN-deficient cells were unable to maintain active spindle checkpoint after taxol treatment. Genomic instability in PTEN deficient cells could not be attributed to lack of PTEN at centromeres, since no interaction was detected between centromeric DNA and PTEN in wild type cells. These results indicate that PTEN deficiency alters multiple cell cycle checkpoints possibly leaving less time for DNA damage repair and/or chromosome segregation as evidenced by the increased structural as well as numerical alterations seen in PTEN deficient cells.


Cell Reports | 2014

MOF Phosphorylation by ATM Regulates 53BP1-Mediated Double-Strand Break Repair Pathway Choice

Arun Gupta; Clayton R. Hunt; Muralidhar L. Hegde; Sharmistha Chakraborty; Durga Udayakumar; Nobuo Horikoshi; Mayank Singh; Deepti B. Ramnarain; Walter N. Hittelman; Sarita Namjoshi; Aroumougame Asaithamby; Tapas K. Hazra; Thomas Ludwig; Raj K. Pandita; Jessica K. Tyler; Tej K. Pandita

Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.

Collaboration


Dive into the Arun Gupta's collaboration.

Top Co-Authors

Avatar

Tej K. Pandita

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Raj K. Pandita

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Clayton R. Hunt

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Ashu Seith Bhalla

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Manisha Jana

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Girdhar G. Sharma

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Shivanand Gamanagatti

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Nobuo Horikoshi

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Atin Kumar

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Chandan Jyoti Das

All India Institute of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge