Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arun Malhotra is active.

Publication


Featured researches published by Arun Malhotra.


Nucleic Acids Research | 2006

Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing

Hitoshi Suzuki; Yuhong Zuo; Jinhua Wang; Michael Q. Zhang; Arun Malhotra; Akila Mayeda

Besides linear RNAs, pre-mRNA splicing generates three forms of RNAs: lariat introns, Y-structure introns from trans-splicing, and circular exons through exon skipping. To study the persistence of excised introns in total cellular RNA, we used three Escherichia coli 3′ to 5′ exoribonucleases. Ribonuclease R (RNase R) thoroughly degrades the abundant linear RNAs and the Y-structure RNA, while preserving the loop portion of a lariat RNA. Ribonuclease II (RNase II) and polynucleotide phosphorylase (PNPase) also preserve the lariat loop, but are less efficient in degrading linear RNAs. RNase R digestion of the total RNA from human skeletal muscle generates an RNA pool consisting of lariat and circular RNAs. RT–PCR across the branch sites confirmed lariat RNAs and circular RNAs in the pool generated by constitutive and alternative splicing of the dystrophin pre-mRNA. Our results indicate that RNase R treatment can be used to construct an intronic cDNA library, in which majority of the intron lariats are represented. The highly specific activity of RNase R implies its ability to screen for rare intragenic trans-splicing in any target gene with a large background of cis-splicing. Further analysis of the intronic RNA pool from a specific tissue or cell will provide insights into the global profile of alternative splicing.


Journal of Biological Chemistry | 2007

The Molecular Basis for Ligand Specificity in a Mouse Olfactory Receptor A NETWORK OF FUNCTIONALLY IMPORTANT RESIDUES

Tatjana Abaffy; Arun Malhotra; Charles W. Luetje

Sequence differences between members of the mouse olfac-tory receptor MOR42 subfamily (MOR42-3 and MOR42-1) are likely to be the basis for variation in ligand binding preference among these receptors. We investigated the specificity of MOR42-3 for a variety of dicarboxylic acids. We used site-directed mutagenesis, guided by homology modeling and ligand docking studies, to locate functionally important residues. Receptors were expressed in Xenopus oocytes and assayed using high throughput electrophysiology. The importance of the Val-113 residue, located deep within the receptor, was analyzed in the context of interhelical interactions. We also screened additional residues predicted to be involved in ligand binding site, based on comparison of ortholog/paralog pairs from the mouse and human olfactory receptor genomes (Man, O., Gilad, Y., and Lancet, D. (2004) Protein Sci. 13, 240–254). A network of 8 residues in transmembrane domains III, V, and VI was identified. These residues form part of the ligand binding pocket of MOR42-3. C12 dicarboxylic acid did not activate the receptor in our functional assay, yet our docking simulations predicted its binding site in MOR42-3. Binding without activation implied that C12 dicarboxylic acid might act as an antagonist. In our functional assay, C12 dicarboxylic acid did indeed act as an antagonist of MOR42-3, in agreement with molecular docking studies. Our results demonstrate a powerful approach based on the synergy between computational predictions and physiological assays.


Methods in Enzymology | 2009

TAGGING FOR PROTEIN EXPRESSION

Arun Malhotra

Tags are frequently used in the expression of recombinant proteins to improve solubility and for affinity purification. A large number of tags have been developed for protein production and researchers face a profusion of choices when designing expression constructs. Here, we survey common affinity and solubility tags, and offer some guidance on their selection and use.


Iubmb Life | 2004

Ephrins and their Receptors: Binding versus Biology

Carla T. Blits-Huizinga; Claudiu M. Nelersa; Arun Malhotra; Daniel J. Liebl

Ephrins and Eph receptors play important roles in the development of the central nervous system and peripheral tissues by orchestrating cellular movements, resulting in events such as axonal growth cone guidance, tissue segmentation, and angiogenic remodeling. To understand the role of specific ephrin and Eph receptor interactions, it is important to identify the binding specificity between individual ligand‐receptor complexes. To date, a dogma in the field suggests that there may be promiscuous binding within the subclasses of the ephrin family. However, this overlooks and contradicts several binding studies that suggest specificity within each subclass. Although binding studies only provide evidence on the dynamics and strength of protein interactions, they do not indicate whether particular interactions are physiologically relevant. Thus, distribution and gene targeted mutations of ephrins and their receptors can provide critical insights into the relevance of specific ligand‐receptors interactions. This review mainly focuses on the B‐class family and will evaluate the differences between binding affinities and biological functions, importance of oligomeric interactions, and structural differences and similarities between classes. IUBMB Life, 56: 257‐265, 2004


Molecular Pharmacology | 2005

Determinants of Zinc Potentiation on the α4 Subunit of Neuronal Nicotinic Receptors

Bernard Hsiao; Karla B. Mihalak; Sarah E. Repicky; Drew Everhart; Ana H. Mederos; Arun Malhotra; Charles W. Luetje

We have shown previously that the function of neuronal nicotinic acetylcholine receptors can be modulated by zinc. This modulation varies from potentiation to inhibition, depending on receptor subunit composition and zinc concentration, with the α4β2 and α4β4 receptors displaying the most dramatic potentiation. In this study, we used site-directed mutagenesis to identify glutamate 59 and histidine 162 on the rat α4 subunit as potential mediators of zinc potentiation. By modeling the extracellular domain of the receptor pentamer, we locate these residues to two subunit-subunit interfaces that alternate with the two acetylcholine-binding interfaces. Substitution of a cysteine at either position allows additional reduction of zinc potentiation upon treatment with the methanethiosulfonate reagents N-biotinoylaminoethyl methanethiosulfonate (MTSEA-biotin) and [2-(trimethylammonium)ethyl] methanethiosulfonate. Mutagenesis and methanethiosulfonate treatment are most effective at position 162, and the presence of zinc hinders the reaction of MTSEA-biotin with the substituted cysteine at this position, suggesting that α4His162 participates in forming a coordination site for zinc. Mutagenesis and methanethiosulfonate treatment are less effective at position 59, suggesting that whereas α4Glu59 may be near the zinc coordination site, it may not be participating in coordination of the zinc ion. It is noteworthy that the position of α4Glu59 within the neuronal nAChR is identical to that of a residue that lines the benzodiazepine-binding site on GABAA receptors. We suggest that the zinc potentiation sites on neuronal nAChRs are structurally and functionally similar to the benzodiazepine-binding sites on GABAA receptors.


Journal of Molecular Biology | 2012

Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors.

Caleb B. McDonald; Laura Buffa; Tomer Bar-Mag; Zaidoun Salah; Vikas Bhat; David C. Mikles; Brian J. Deegan; Kenneth L. Seldeen; Arun Malhotra; Marius Sudol; Rami I. Aqeilan; Zafar Nawaz; Amjad Farooq

The WW-containing oxidoreductase (WWOX) tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WW-binding protein 1 (WBP1) and WW-binding protein 2 (WBP2) signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of a triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically distinct E66/Y85 duo at structurally equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, not only does the introduction of E66R/Y85W double substitution within the WW2 domain result in gain of function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild-type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease.


Nucleic Acids Research | 2016

Reversible acetylation on Lys501 regulates the activity of RNase II.

Limin Song; Guangyuan Wang; Arun Malhotra; Murray P. Deutscher; Wenxing Liang

RNase II, a 3′ to 5′ processive exoribonuclease, is the major hydrolytic enzyme in Escherichia coli accounting for ∼90% of the total activity. Despite its importance, little is actually known about regulation of this enzyme. We show here that one residue, Lys501, is acetylated in RNase II. This modification, reversibly controlled by the acetyltransferase Pka, and the deacetylase CobB, affects binding of the substrate and thus decreases the catalytic activity of RNase II. As a consequence, the steady-state level of target RNAs of RNase II may be altered in the cells. We also find that under conditions of slowed growth, the acetylation level of RNase II is elevated and the activity of RNase II decreases, emphasizing the importance of this regulatory process. These findings indicate that acetylation can regulate the activity of a bacterial ribonuclease.


Journal of Biological Chemistry | 2015

Human DNA Exonuclease TREX1 Is Also an Exoribonuclease That Acts on Single-stranded RNA.

Fenghua Yuan; Tanmay Dutta; Ling Wang; Lei Song; Liya Gu; Liangyue Qian; Anaid Benitez; Shunbin Ning; Arun Malhotra; Murray P. Deutscher; Yanbin Zhang

Background: 3′ repair exonuclease 1 (TREX1) is a DNase involved in autoimmune disorders and the antiviral response. Results: TREX1 also degrades single-stranded RNA or RNA in a RNA/DNA hybrid molecule. Conclusion: TREX1 is a human homolog of Escherichia coli RNase T. Significance: The novel RNase activity of TREX1 is crucial for understanding its physiological role. 3′ repair exonuclease 1 (TREX1) is a known DNA exonuclease involved in autoimmune disorders and the antiviral response. In this work, we show that TREX1 is also a RNA exonuclease. Purified TREX1 displays robust exoribonuclease activity that degrades single-stranded, but not double-stranded, RNA. TREX1-D200N, an Aicardi-Goutieres syndrome disease-causing mutant, is defective in degrading RNA. TREX1 activity is strongly inhibited by a stretch of pyrimidine residues as is a bacterial homolog, RNase T. Kinetic measurements indicate that the apparent Km of TREX1 for RNA is higher than that for DNA. Like RNase T, human TREX1 is active in degrading native tRNA substrates. Previously reported TREX1 crystal structures have revealed that the substrate binding sites are open enough to accommodate the extra hydroxyl group in RNA, further supporting our conclusion that TREX1 acts on RNA. These findings indicate that its RNase activity needs to be taken into account when evaluating the physiological role of TREX1.


Journal of Biological Chemistry | 2016

How RNase R Degrades Structured RNA: ROLE OF THE HELICASE ACTIVITY AND THE S1 DOMAIN.

Sk Tofajjen Hossain; Arun Malhotra; Murray P. Deutscher

RNase R, a ubiquitous 3′ exoribonuclease, plays an important role in many aspects of RNA metabolism. In contrast to other exoribonucleases, RNase R can efficiently degrade highly structured RNAs, but the mechanism by which this is accomplished has remained elusive. It is known that RNase R contains an unusual, intrinsic RNA helicase activity that facilitates degradation of duplex RNA, but how it stimulates the nuclease activity has also been unclear. Here, we have made use of specifically designed substrates to compare the nuclease and helicase activities of RNase R. We have also identified and mutated several residues in the S1 RNA-binding domain that are important for interacting with duplex RNA and have measured intrinsic tryptophan fluorescence to analyze the conformational changes that occur upon binding of structured RNA. Using these approaches, we have determined the relation of the RNA helicase, ATP binding, and nuclease activities of RNase R. This information has been combined with a structural analysis of RNase R, based on its homology to RNase II, whose structure has been determined, to develop a detailed model that explains how RNase R digests structured RNA and how this differs from its action on single-stranded RNA.


Journal of Biological Chemistry | 2013

How a CCA Sequence Protects Mature tRNAs and tRNA Precursors from Action of the Processing Enzyme RNase BN/RNase Z

Tanmay Dutta; Arun Malhotra; Murray P. Deutscher

Background: 3′-Terminal CCA-containing tRNAs and precursors are resistant to action of RNase BN/RNase Z. Results: Arg274 and the two C residues are required for protection by the CCA sequence. Conclusion: Presence of Arg274 and CC sequence prevents RNA substrate from moving into the RNase catalytic site. Significance: This mechanism explains how mature tRNAs are protected from removal of the CCA sequence by a processing RNase. In many organisms, 3′ maturation of tRNAs is catalyzed by the endoribonuclease, RNase BN/RNase Z, which cleaves after the discriminator nucleotide to generate a substrate for addition of the universal CCA sequence. However, tRNAs or tRNA precursors that already contain a CCA sequence are not cleaved, thereby avoiding a futile cycle of removal and readdition of these essential residues. We show here that the adjacent C residues of the CCA sequence and an Arg residue within a highly conserved sequence motif in the channel leading to the RNase catalytic site are both required for the protective effect of the CCA sequence. When both of these determinants are present, CCA-containing RNAs in the channel are unable to move into the catalytic site; however, substitution of either of the C residues by A or U or mutation of Arg274 to Ala allows RNA movement and catalysis to proceed. These data define a novel mechanism for how tRNAs are protected against the promiscuous action of a processing enzyme.

Collaboration


Dive into the Arun Malhotra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge