Arun Prabhu Dhanapal
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arun Prabhu Dhanapal.
G3: Genes, Genomes, Genetics | 2015
Jeffery D. Ray; Arun Prabhu Dhanapal; Shardendu K. Singh; Valerio Hoyos-Villegas; James R. Smith; Larry C. Purcell; C. Andy King; Debbie Boykin; Perry B. Cregan; Qijian Song; Felix B. Fritschi
Ureides are the N-rich products of N-fixation that are transported from soybean nodules to the shoot. Ureides are known to accumulate in leaves in response to water-deficit stress, and this has been used to identify genotypes with reduced N-fixation sensitivity to drought. Our objectives in this research were to determine shoot ureide concentrations in 374 Maturity Group IV soybean accessions and to identify genomic regions associated with shoot ureide concentration. The accessions were grown at two locations (Columbia, MO, and Stuttgart, AR) in 2 yr (2009 and 2010) and characterized for ureide concentration at beginning flowering to full bloom. Average shoot ureide concentrations across all four environments (two locations and two years) and 374 accessions ranged from 12.4 to 33.1 µmol g−1 and were comparable to previously reported values. SNP–ureide associations within and across the four environments were assessed using 33,957 SNPs with a MAF ≥0.03. In total, 53 putative loci on 18 chromosomes were identified as associated with ureide concentration. Two of the putative loci were located near previously reported QTL associated with ureide concentration and 30 loci were located near genes associated with ureide metabolism. The remaining putative loci were not near chromosomal regions previously associated with shoot ureide concentration and may mark new genes involved in ureide metabolism. Ultimately, confirmation of these putative loci will provide new sources of variation for use in soybean breeding programs.
The Scientific World Journal | 2014
Baskaran Kannan; Senthilvel Senapathy; Arcot Gajaraj Bhasker Raj; Subhash Chandra; Arunachalam Muthiah; Arun Prabhu Dhanapal; Charles Thomas Hash
Pearl millet is a staple food crop for millions of people living in the arid and semi-arid tropics. Molecular markers have been used to identify genomic regions linked to traits of interest by conventional QTL mapping and association analysis. Phenotypic recurrent selection is known to increase frequencies of favorable alleles and decrease those unfavorable for the traits under selection. This study was undertaken (i) to quantify the response to recurrent selection for phenotypic traits during breeding of the pearl millet open-pollinated cultivar “CO (Cu) 9” and its four immediate progenitor populations and (ii) to assess the ability of simple sequence repeat (SSR) marker alleles to identify genomic regions linked to grain and stover yield-related traits in these populations by association analysis. A total of 159 SSR alleles were detected across 34 selected single-copy SSR loci. SSR marker data revealed presence of subpopulations. Association analysis identified genomic regions associated with flowering time located on linkage group (LG) 6 and plant height on LG4, LG6, and LG7. Marker alleles on LG6 were associated with stover yield, and those on LG7 were associated with grain yield. Findings of this study would give an opportunity to develop marker-assisted recurrent selection (MARS) or marker-assisted population improvement (MAPI) strategies to increase the rate of gain for pearl millet populations undergoing recurrent selection.
Journal of Plant Science and Molecular Breeding | 2012
Arun Prabhu Dhanapal; Pedro J. Martínez-García; Thomas M. Gradziel; Carlos H. Crisosto
Abstract Peach and nectarine (Prunus persica L) are highly perishable; they ripen and deteriorate quickly at ambient temperature. Storage at low temperature (0–5°C) is a common strategy used to slow the ripening processes and
Crop & Pasture Science | 2016
Ahmed Sallam; Arun Prabhu Dhanapal; Siyang Liu
Abstract. Improving frost tolerance and winter hardiness with desirable agronomic features are the main objectives in winter faba bean (Vicia faba L.) breeding programs, especially in cool temperate regions of Europe. In this study, 189 single-seed-descent lines of winter faba bean from the Göttingen Winter Bean Population were evaluated in field trials (winter hardiness and yield traits). Seven traits were examined (three winter-hardiness traits and four yield traits) and scored. Of the 189 genotypes, 11 lines were identified as winter hardy and having high seed yield. The highest repeatability (h2) estimates were found for leaf frost susceptibility (0.86) among the winter-hardiness traits and for days to flowering (0.95) among the yield traits. In total, 25 putative quantitative trait loci (QTLs) were identified, for winter survival rate (one QTL), 1000-seed weight (one QTL), field plant height (two QTLs), days to flowering (nine QTLs), and seed yield (12 QTLs), based on the association mapping approach using 156 single nucleotide polymorphism (SNP) markers. Candidate genes were identified for QTLs by using synteny between Vicia faba and Medicago truncatula. The SNP markers identified in this study may be used for accelerating breeding program in faba bean to improve winter hardiness and yield traits.
PLOS ONE | 2015
Arun Prabhu Dhanapal; Jeffery D. Ray; Shardendu K. Singh; Valerio Hoyos-Villegas; James R. Smith; Larry C. Purcell; C. Andy King; Felix B. Fritschi
Carotenoids are organic pigments that are produced predominantly by photosynthetic organisms and provide antioxidant activity to a wide variety of plants, animals, bacteria, and fungi. The carotenoid biosynthetic pathway is highly conserved in plants and occurs mostly in chromoplasts and chloroplasts. Leaf carotenoids play important photoprotective roles and targeted selection for leaf carotenoids may offer avenues to improve abiotic stress tolerance. A collection of 332 soybean [Glycine max (L.) Merr.] genotypes was grown in two years and total leaf carotenoid content was determined using three different methods. The first method was based on extraction and spectrophotometric determination of carotenoid content (eCaro) in leaf tissue, whereas the other two methods were derived from high-throughput canopy spectral reflectance measurements using wavelet transformed reflectance spectra (tCaro) and a spectral reflectance index (iCaro). An association mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs) to identify SNPs associated with total carotenoid content using a mixed linear model based on data from two growing seasons. A total of 28 SNPs showed a significant association with total carotenoid content in at least one of the three approaches. These 28 SNPs likely tagged 14 putative loci for carotenoid content. Six putative loci were identified using eCaro, five loci with tCaro, and nine loci with iCaro. Three of these putative loci were detected by all three carotenoid determination methods. All but four putative loci were located near a known carotenoid-related gene. These results showed that carotenoid markers can be identified in soybean using extract-based as well as by high-throughput canopy spectral reflectance-based approaches, demonstrating the utility of field-based canopy spectral reflectance phenotypes for association mapping.
Genetics research international | 2015
Arun Prabhu Dhanapal; Mahalingam Govindaraj
The number of sequenced crop genomes and associated genomic resources is growing rapidly with the advent of inexpensive next generation sequencing methods. Databases have become an integral part of all aspects of science research, including basic and applied plant and animal sciences. The importance of databases keeps increasing as the volume of datasets from direct and indirect genomics, as well as other omics approaches, keeps expanding in recent years. The databases and associated web portals provide at a minimum a uniform set of tools and automated analysis across a wide range of crop plant genomes. This paper reviews some basic terms and considerations in dealing with crop plant databases utilization in advancing genomic era. The utilization of databases for variation analysis with other comparative genomics tools, and data interpretation platforms are well described. The major focus of this review is to provide knowledge on platforms and databases for genome-based investigations of agriculturally important crop plants. The utilization of these databases in applied crop improvement program is still being achieved widely; otherwise, the end for sequencing is not far away.
The Plant Genome | 2015
Arun Prabhu Dhanapal; Jeffery D. Ray; Shardendu K. Singh; Valerio Hoyos-Villegas; James R. Smith; Larry C. Purcell; C. Andy King; Felix B. Fritschi
Nitrogen is a primary plant nutrient that plays a major role in achieving maximum economic yield. Insufficient availability most often limits soybean [Glycine max (L.) Merr.] crop growth. Symbiotic N2 fixation in soybean is highly sensitive to limited water availability, and breeding for reduced N2 fixation sensitivity to drought is considered an important objective to improve yields under drought. The objective of this study was to identify single nucleotide polymorphism (SNP) markers associated with N traits. A collection of 373 diverse soybean genotypes were grown in four field environments (2 yr and two locations) and characterized for N derived from atmosphere (Ndfa), N concentration ([N]), and C/N ratio. The population structure of 373 soybean genotypes was assessed based on 31,145 SNPs and genome‐wide association analysis using a unified mixed model identified SNPs associated with Ndfa, [N], and C/N ratio. Although the Ndfa, [N], and C/N ratio values were significantly different between the two locations in both years, results were consistent among genotypes across years and locations. While numerous SNPs were identified by association analysis for each trait in only one of the four environments, 17, 19, and 24 SNPs showed a significant association with Ndfa, [N], and C/N ratio, respectively, in at least two environments as well as with the average across all four environments. These markers represent an important resource for pyramiding favorable alleles for drought tolerance and for identifying extremes for comparative physiological studies.
Plant Genetic Resources | 2011
Arun Prabhu Dhanapal; M. Ciaffi; Enrico Porceddu; Elisa d'Aloisio
Protein disulphide isomerase (PDI) catalyses the formation, reduction and isomerization of disulphide bonds in the newly synthesized secretory proteins. Plant PDIs have been shown to be involved in the folding and deposition of seed storage proteins, which makes this enzyme particularly interesting in wheat, as flour quality is strongly affected by composition and structure of seed storage proteins. In hexaploid wheat cultivar (AABBDD) Chinese Spring (CS), the genomic, complementary DNA and promoter sequences of the three homoeologous gene encoding PDI had been isolated and characterized in a previous study revealing high levels of sequence conservation. In this study, we report the isolation and sequencing of a ,700 bp region, comprising ,600 bp of the putative promoter region and 88 bp of the first exon of the typical PDI gene, in five accessions each from Triticum urartu (AA), Aegilops speltoides (BB) and Aegilops tauschii (DD). Sequence analysis indicated large variation among sequences belonging to the different genomes, while close similarity was found within each species and with the corresponding homoeologous PDI sequences of Triticum aestivum cv. CS (AABBDD) resulting in an overall high conservation of the regulatory motifs conferring endosperm-specific expression.
Frontiers in Plant Science | 2017
Suhas Kadam; Alejandra Abril; Arun Prabhu Dhanapal; Robert P. Koester; Wilfred Vermerris; Shibu Jose; Felix B. Fritschi
Waterlogging is a significant environmental constraint to crop production, and a better understanding of plant responses is critical for the improvement of crop tolerance to waterlogged soils. Aquaporins (AQPs) are a class of channel-forming proteins that play an important role in water transport in plants. This study aimed to examine the regulation of AQP genes under waterlogging stress and to characterize the genetic variability of AQP genes in sorghum (Sorghum bicolor). Transcriptional profiling of AQP genes in response to waterlogging stress in nodal root tips and nodal root basal regions of two tolerant and two sensitive sorghum genotypes at 18 and 96 h after waterlogging stress imposition revealed significant gene-specific pattern with regard to genotype, root tissue sample, and time point. For some tissue sample and time point combinations, PIP2-6, PIP2-7, TIP2-2, TIP4-4, and TIP5-1 expression was differentially regulated in tolerant compared to sensitive genotypes. The differential response of these AQP genes suggests that they may play a tissue specific role in mitigating waterlogging stress. Genetic analysis of sorghum revealed that AQP genes were clustered into the same four subfamilies as in maize (Zea mays) and rice (Oryza sativa) and that residues determining the AQP channel specificity were largely conserved across species. Single nucleotide polymorphism (SNP) data from 50 sorghum accessions were used to build an AQP gene-based phylogeny of the haplotypes. Phylogenetic analysis based on single nucleotide polymorphisms of sorghum AQP genes placed the tolerant and sensitive genotypes used for the expression study in distinct groups. Expression analyses suggested that selected AQPs may play a pivotal role in sorghum tolerance to water logging stress. Further experimentation is needed to verify their role and to leverage phylogenetic analyses and AQP expression data to improve waterlogging tolerance in sorghum.
The Plant Genome | 2016
Matthew Herritt; Arun Prabhu Dhanapal; Felix B. Fritschi
The photochemical reflectance index (PRI) is determined from canopy spectral reflectance measurements and can provide important information about photosynthesis. The PRI can be used to assess the epoxidation state of xanthophyll pigments, which provides information on nonphotochemical quenching (NPQ) and the amount of energy used for photosynthesis. Genome‐wide association analyses were conducted to identify single‐nucleotide polymorphisms (SNPs) and genomic loci associated with PRI using data from a soybean [Glycine max (L.) Merr.] diversity panel grown under field conditions over 2 yr. Based on a mixed linear model (MLM), 31 unique candidate SNPs that identify 15 putative loci on 11 chromosomes were identified. Several candidate genes known to be associated with NPQ, photosynthesis, and sugar transport processes were identified in the proximity of 10 putative loci. Violaxanthin de‐epoxidase, one of the identified genes, is directly involved in the xanthophyll cycle, which plays a major role in NPQ. This study is the first to identify genomic loci for PRI and illustrates the potential of canopy spectral reflectance measurements for high‐throughput phenotyping of a photosynthesis related trait. Significant SNPs, candidate genes, and genotypes contrasting for PRI identified in this study may prove useful for crop improvement efforts.