Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arun V. Krishnan is active.

Publication


Featured researches published by Arun V. Krishnan.


CA: A Cancer Journal for Clinicians | 2013

Chemotherapy‐induced peripheral neurotoxicity: A critical analysis

Susanna B. Park; David Goldstein; Arun V. Krishnan; Cindy S.-Y. Lin; Michael Friedlander; James T. Cassidy; Martin Koltzenburg; Matthew C. Kiernan

With a 3‐fold increase in the number of cancer survivors noted since the 1970s, there are now over 28 million cancer survivors worldwide. Accordingly, there is a heightened awareness of long‐term toxicities and the impact on quality of life following treatment in cancer survivors. This review will address the increasing importance and challenge of chemotherapy‐induced neurotoxicity, with a focus on neuropathy associated with the treatment of breast cancer, colorectal cancer, testicular cancer, and hematological cancers. An overview of the diagnosis, symptomatology, and pathophysiology of chemotherapy‐induced peripheral neuropathy will be provided, with a critical analysis of assessment strategies, neuroprotective approaches, and potential treatments. The review will concentrate on neuropathy associated with taxanes, platinum compounds, vinca alkaloids, thalidomide, and bortezomib, providing clinical information specific to these chemotherapies. CA Cancer J Clin 2013;63:419‐437. ©2013 American Cancer Society, Inc.


Muscle & Nerve | 2005

Oxaliplatin-induced neurotoxicity and the development of neuropathy.

Arun V. Krishnan; David Goldstein; Michael Friedlander; Matthew C. Kiernan

The pathophysiology of oxaliplatin‐induced neurotoxicity remains unclear, although in vitro studies suggest involvement of voltage‐gated Na+ channels. In the present study, clinical assessment was combined with nerve conduction studies (NCS) and nerve excitability studies in 16 patients after completion of oxaliplatin therapy. Chronic neuropathic symptoms persisted in 50% of patients. NCS confirmed abnormalities in symptomatic patients: sensory potentials were significantly low, whereas motor studies remained essentially normal. At 12‐month follow‐up of symptomatic patients, positive sensory symptoms improved but NCS abnormalities persisted. Cumulative oxaliplatin dose was a predictor of neuropathy, and long‐term effects appeared to be minimized by low single‐infusion dosages. Nerve excitability measures in symptomatic patients established that axons were of high threshold. Refractoriness was significantly greater in patients (symptomatic group, 56.3 ± 24.9%; entire patient group, 46.3 ± 12.5%; controls, 27.1 ± 1.9%; P < 0.05). Thus, although positive sensory symptoms of oxaliplatin‐induced neuropathy improved, negative sensory symptoms and abnormalities of sensory nerve conduction persisted. Differences in nerve excitability measures, particularly refractoriness, support in vitro studies indicating involvement of voltage‐gated transient Na+‐channel dysfunction in the development of oxaliplatin‐induced neurotoxicity. Muscle Nerve, 2005


Current Medicinal Chemistry | 2008

Mechanisms underlying chemotherapy-induced neurotoxicity and the potential for neuroprotective strategies.

Susanna B. Park; Arun V. Krishnan; C.S-Y. Lin; David Goldstein; Michael Friedlander; Matthew C. Kiernan

Chemotherapy-induced neurotoxicity is a significant complication in the successful treatment of many cancers. Neurotoxicity may develop as a consequence of treatment with platinum analogues (cisplatin, oxaliplatin, carboplatin), taxanes (paclitaxel, docetaxel), vinca alkaloids (vincristine) and more recently, thalidomide and bortezomib. Typically, the clinical presentation reflects an axonal peripheral neuropathy with glove-and-stocking distribution sensory loss, combined with features suggestive of nerve hyperexcitability including paresthesia, dysesthesia, and pain. These symptoms may be disabling, adversely affecting activities of daily living and thereby quality of life. The incidence of chemotherapy-induced neurotoxicity appears critically related to cumulative dose and infusion duration, while individual risk factors may also influence the development and severity of neurotoxicity. Differences in structural properties between chemotherapies further contribute to variations in clinical presentation. The mechanisms underlying chemotherapy-induced neurotoxicity are diverse and include damage to neuronal cell bodies in the dorsal root ganglion and axonal toxicity via transport deficits or energy failure. More recently, axonal membrane ion channel dysfunction has been identified, including studies in patients treated with oxaliplatin which have revealed alterations in axonal Na(+) channels, suggesting that prophylactic pharmacological therapies aimed at modulating ion channel activity may prove useful in reducing neurotoxicity. As such, improved understanding of the pathophysiology of chemotherapy-induced neurotoxicity will inevitably assist in the development of future neuroprotective strategies and in the design of novel chemotherapies with improved toxicity profiles.


Brain | 2009

Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy.

Susanna B. Park; Cindy S.-Y. Lin; Arun V. Krishnan; David Goldstein; Michael Friedlander; Matthew C. Kiernan

Administration of oxaliplatin, a platinum-based chemotherapy used extensively in the treatment of colorectal cancer, is complicated by prominent dose-limiting neurotoxicity. Acute neurotoxicity develops following oxaliplatin infusion and resolves within days, while chronic neuropathy develops progressively with higher cumulative doses. To investigate the pathophysiology of oxaliplatin-induced neurotoxicity and neuropathy, clinical grading scales, nerve conduction studies and a total of 905 axonal excitability studies were undertaken in a cohort of 58 consecutive oxaliplatin-treated patients. Acutely following individual oxaliplatin infusions, significant changes were evident in both sensory and motor axons in recovery cycle parameters (P < 0.05), consistent with the development of a functional channelopathy of axonal sodium channels. Longitudinally across treatment (cumulative oxaliplatin dose 776 +/- 46 mg/m(2)), progressive abnormalities developed in sensory axons (refractoriness P < or = 0.001; superexcitability P < 0.001; hyperpolarizing threshold electrotonus 90-100 ms P < or = 0.001), while motor axonal excitability remained unchanged (P > 0.05), consistent with the purely sensory symptoms of chronic oxaliplatin-induced neuropathy. Sensory abnormalities occurred prior to significant reduction in compound sensory amplitude and the development of neuropathy (P < 0.01). Sensory excitability abnormalities that developed during early treatment cycles (cumulative dose 294 +/- 16 mg/m(2) oxaliplatin; P < 0.05) were able to predict final clinical outcome on an individual patient basis in 80% of patients. As such, sensory axonal excitability techniques may provide a means to identify pre-clinical oxaliplatin-induced nerve dysfunction prior to the onset of chronic neuropathy. Furthermore, patients with severe neurotoxicity at treatment completion demonstrated greater excitability changes (P < 0.05) than those left with mild or moderate neurotoxicity, suggesting that assessment of sensory excitability parameters may provide a sensitive biomarker of severity for oxaliplatin-induced neurotoxicity.


Muscle & Nerve | 2007

Uremic neuropathy: Clinical features and new pathophysiological insights

Arun V. Krishnan; Matthew C. Kiernan

Neuropathy is a common complication of end‐stage kidney disease (ESKD), typically presenting as a distal symmetrical process with greater lower‐limb than upper‐limb involvement. The condition is of insidious onset, progressing over months. and has been estimated to be present in 60%–100% of patients on dialysis. Neuropathy generally only develops at glomerular filtration rates of less than 12 ml/min. The most frequent clinical features reflect large‐fiber involvement, with paresthesias, reduction in deep tendon reflexes, impaired vibration sense, muscle wasting, and weakness. Nerve conduction studies demonstrate findings consistent with a generalized neuropathy of the axonal type. Patients may also develop autonomic features, with postural hypotension, impaired sweating, diarrhea, constipation, or impotence. The development of uremic neuropathy has been related previously to the retention of neurotoxic molecules in the middle molecular range, although this hypothesis lacked formal proof. Studies utilizing novel axonal excitability techniques have recently shed further light on the pathophysiology of this condition. Nerves of uremic patients have been shown to exist in a chronically depolarized state prior to dialysis, with subsequent improvement and normalization of resting membrane potential after dialysis. The degree of depolarization correlates with serum K+, suggesting that chronic hyperkalemic depolarization plays an important role in the development of nerve dysfunction in ESKD. These recent findings suggest that maintenance of serum K+ within normal limits between periods of dialysis, rather than simple avoidance of hyperkalemia, is likely to reduce the incidence and severity of uremic neuropathy. Muscle Nerve, 2006


Progress in Neurobiology | 2009

Axonal ion channels from bench to bedside: a translational neuroscience perspective.

Arun V. Krishnan; Cindy S.-Y. Lin; Susanna B. Park; Matthew C. Kiernan

Over recent decades, the development of specialised techniques such as patch clamping and site-directed mutagenesis have established the contribution of neuronal ion channel dysfunction to the pathophysiology of common neurological conditions including epilepsy, multiple sclerosis, spinal cord injury, peripheral neuropathy, episodic ataxia, amyotrophic lateral sclerosis and neuropathic pain. Recently, these insights from in vitro studies have been translated into the clinical realm. In keeping with this progress, novel clinical axonal excitability techniques have been developed to provide information related to the activity of a variety of ion channels, energy-dependent pumps and ion exchange processes activated during impulse conduction in peripheral axons. These non-invasive techniques have been extensively applied to the study of the biophysical properties of human peripheral nerves in vivo and have provided important insights into axonal ion channel function in health and disease. This review will provide a translational perspective, focusing on an overview of the investigational method, the clinical utility in assessing the biophysical basis of ectopic symptom generation in peripheral nerve disease and a review of the major findings of excitability studies in acquired and inherited neurological disease states.


Journal of Clinical Oncology | 2009

Acute Abnormalities of Sensory Nerve Function Associated With Oxaliplatin-Induced Neurotoxicity

Susanna B. Park; David Goldstein; Cindy S.-Y. Lin; Arun V. Krishnan; Michael Friedlander; Matthew C. Kiernan

PURPOSE Neurotoxicity is becoming increasingly recognized as the major dose-limiting toxicity of oxaliplatin. Because the mechanism of oxaliplatin-induced neurotoxicity remains unclear, the present study investigated the potential of axonal excitability techniques in identifying pathophysiologic mechanisms and early markers of nerve dysfunction. PATIENTS AND METHODS Measures of sensory axonal excitability were recorded before and after infusion over 88 treatment cycles in 25 patients with colorectal cancer, who received a total oxaliplatin dose of 766 +/- 56 mg/m(2). Neurologic assessment, clinical rating scales, and routine nerve conduction studies were performed. RESULTS By completion of treatment, 16% of patients had developed severe (grade 3) neurotoxicity, and oxaliplatin dose reduction or cessation as a result of neurotoxicity was required in 40% of patients. Changes in axonal excitability occurred after infusion and could be explained on the basis of alterations in axonal membrane sodium (Na+) channel function (refractoriness: 7.6% +/- 1.7% before infusion v 4.5% +/- 1.4% after infusion; P = .03; superexcitability: -22.8% +/- 0.8% before infusion v -20.1% +/- 1.1% after infusion; P = .0002). Changes became less pronounced in later treatment cycles, suggesting that chronic nerve dysfunction and sensory loss masked acute effects at higher cumulative doses. Importantly, patients who demonstrated reductions in superexcitability in early treatment were subsequently more likely to develop moderate to severe neurotoxicity. The findings suggest that the degree of acute nerve dysfunction may relate to the development of chronic neurotoxicity. CONCLUSION Sensory axonal excitability techniques may facilitate identification of Na+ channel dysfunction in oxaliplatin-induced neurotoxicity and thereby provide a method to identify patients at risk for neurotoxicity to target those most likely to benefit from future neuroprotective strategies.


Oncologist | 2011

Long-Term Neuropathy After Oxaliplatin Treatment: Challenging the Dictum of Reversibility

Susanna B. Park; Cindy S.-Y. Lin; Arun V. Krishnan; David Goldstein; Michael Friedlander; Matthew C. Kiernan

OBJECTIVES Oxaliplatin-induced neuropathy is a significant and dose-limiting toxicity that adversely affects quality of life. However, the long-term neurological sequelae have not been adequately described. The present study aimed to describe the natural history of oxaliplatin-induced neuropathy, using subjective and objective assessments. METHODS From a population of 108 oxaliplatin-treated patients referred for neurological assessment in 2002-2008, 52.2% of the surviving patient cohort (n = 24) was available for follow-up at a median of 25 months post-oxaliplatin. Patients underwent a protocol that incorporated clinical assessment scales, patient questionnaires, standard electrodiagnostic assessments, and novel nerve excitability studies to precisely assess nerve function. RESULTS At follow-up, 79.2% of patients reported residual neuropathic symptoms, with distal loss of pin-prick sensibility in 58.3% of patients and loss of vibration sensibility in 83.3% of patients. Symptom severity scores were significantly correlated with cumulative dose. There was no recovery of sensory action potential amplitudes in upper and lower limbs, consistent with persistent axonal sensory neuropathy. Sensory excitability parameters had not returned to baseline levels, suggesting persisting abnormalities in nerve function. The extent of excitability abnormalities during treatment was significantly correlated with clinical outcomes at follow-up. CONCLUSIONS These findings establish the persistence of subjective and objective deficits in oxaliplatin-treated patients post-oxaliplatin, suggesting that sensory neuropathy is a long-term outcome, thereby challenging the literature on the reversibility of oxaliplatin-induced neuropathy.


Brain | 2013

Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis

Steve Vucic; Cindy Shin-Yi Lin; Benjamin C. Cheah; Jenna Murray; Parvathi Menon; Arun V. Krishnan; Matthew C. Kiernan

Riluzole, a benzothiazole derivative, has been shown to be effective in prolonging survival in amyotrophic lateral sclerosis. The mechanisms by which riluzole exerts neuroprotective effects in amyotrophic lateral sclerosis remains to be fully elucidated, although inhibition of glutamatergic transmission and modulation of Na+ channel function have been proposed. In an attempt to determine the mechanisms by which riluzole exerts neuroprotective effects, in particular to dissect the relative contributions of inhibition of glutamatergic transmission and Na+ channel modulation, the present study utilized a combination of cortical and peripheral axonal excitability approaches to monitor changes in excitability and function in patients with amyotrophic lateral sclerosis. Cortical assessment was undertaken by utilising the threshold tracking transcranial magnetic stimulation (TMS) technique and combined with peripheral axonal excitability studies in 25 patients with amyotrophic lateral sclerosis. Studies were performed at baseline and repeated when patients were receiving riluzole 100 mg/day. At the time of second testing all patients were tolerating the medication well. Motor evoked potential and compound muscle action potential responses were recorded over the abductor pollicis brevis muscle. At baseline, features of cortical hyperexcitability were evident in patients with amyotrophic lateral sclerosis, indicated by marked reduction in short interval intracortical inhibition (P < 0.001) and cortical silent period duration (P < 0.001), as well as an increase in the motor evoked potential amplitude (P < 0.01). Riluzole therapy partially normalized cortical excitability by significantly increasing short interval intracortical inhibition (short interval intracortical inhibitionbaseline 0.5 ± 1.8%; short interval intracortical inhibitionON riluzole 7.9 ± 1.7%, P < 0.01). In contrast, riluzole did not exert any modulating effect on cortical silent period duration (P = 0.45) or motor evoked potential amplitude (P = 0.31). In terms of peripheral nerve function, axonal excitability studies established that, relative to control subjects, patients with amyotrophic lateral sclerosis had significant increases in depolarizing threshold electrotonus [amyotrophic lateral sclerosisbaseline TEd (90-100 ms) 49.1 ± 1.8%; controlsTEd (90-100 ms) 45.2 ± 0.6%, P < 0.01] and superexcitability (amyotrophic lateral sclerosisbaseline 30.1 ± 2.3%; control subjects 23.4 ± 1.0%, P < 0.01) at baseline. Following institution of riluzole therapy there was a significant reduction in superexcitability (amyotrophic lateral sclerosisbaseline 30.1 ± 2.3%; amyotrophic lateral sclerosisON riluzole 27.3 ± 2.3%, P < 0.05) and refractoriness at 2 ms (amyotrophic lateral sclerosisbaseline 98.7 ± 10.7%; amyotrophic lateral sclerosisON riluzole 67.8 ± 9.3%, P < 0.001). In conclusion, the present study has established that riluzole exerts effects on both central and peripheral nerve function, interpreted as partial normalization of cortical hyperexcitability and reduction of transient Na+ conductances. Taken together, these findings suggest that the neuroprotective effects of riluzole in amyotrophic lateral sclerosis are complex, with evidence of independent effects across both compartments of the nervous system.


Clinical Cancer Research | 2006

Oxaliplatin and axonal Na+ channel function in vivo.

Arun V. Krishnan; David Goldstein; Michael Friedlander; Matthew C. Kiernan

Purpose: The aim of the study was to investigate the pathophysiology of oxaliplatin-induced neurotoxicity using clinical nerve excitability techniques that provide information about axonal ion channel function. Experimental Design: Excitability studies were combined with standard nerve conduction studies and clinical assessment in 22 patients undergoing treatment with oxaliplatin. Results: Excitability studies recorded before and immediately after oxaliplatin infusion for 89 treatment cycles revealed significant increases in refractoriness and relative refractory period postinfusion in all patients, consistent with an effect of oxaliplatin on axonal Na+ channels. However, those patients that developed chronic neuropathy had significantly greater changes. Following cessation of oxaliplatin treatment, 41% of patients had persistent symptoms and nerve conduction abnormalities consistent with the development of chronic neuropathy. Conclusion: The present study provides evidence that oxaliplatin-induced neurotoxicity is mediated through an effect on axonal Na+ channels. Clinical nerve excitability techniques may prove beneficial in monitoring for early signs of neurotoxicity and in the assessment of future prophylactic therapies.

Collaboration


Dive into the Arun V. Krishnan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cindy S.-Y. Lin

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ria Arnold

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Goldstein

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Bruce A. Pussell

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Michael Friedlander

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Natalie Kwai

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge