Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aruna Chhikara is active.

Publication


Featured researches published by Aruna Chhikara.


Journal of Biomaterials Science-polymer Edition | 2013

Gallic acid loaded disulfide cross-linked biocompatible polymeric nanogels as controlled release system: synthesis, characterization, and antioxidant activity

Gautam Behl; Monal Sharma; Manisha Sikka; Saurabh Dahiya; Aruna Chhikara; Madhu Chopra

In this article, a sustained release formulation of the antioxidant gallic acid (GA) is presented in the form of glutathione responsive disulfide cross-linked poly(ethylene glycol)-based nanogels synthesized via aqueous inverse miniemulsion using atom transfer radical polymerization. The particle size was found to be in the range from 227 ± 51.78 to 573.3 ± 207.2 nm at three drug loading levels achieved i.e. 6.6, 14.26, and 18.29 wt.% of the nanogels with loading efficiency in the range of 60–70%. The release profile of the GA studied at three drug loading levels suggested a controlled release and the nanogels were capable of scavenging radicals and retained the antioxidant activity. The GA-loaded nanogels were found to be biocompatible on human cervical cancer cell lines (HeLa). DCFH-DA (2,7-dichlorofluorescin diacetate) assay evidenced that the nanogels were capable of scavenging the reactive oxygen species in cellular environment.


Journal of Nanomaterials | 2011

Synthesis, characterization, and evaluation of radical scavenging ability of ellagic acid-loaded nanogels

Gautam Behl; Monal Sharma; Saurabh Dahiya; Aruna Chhikara; Madhu Chopra

Ellagic acid (EA), a potential antioxidant phytochemical has low aqueous solubility and bioavailability. In this paper, encapsulation of ellagic acid has been carried out into the biodegradable disulfide crosslinked poly (ethylene glycol) PEO-based nanogels synthesized via AGET (activator generated electron transfer) ATRP (atom transfer radical polymerization), and their radical scavenging ability was evaluated. The encapsulation of the EA was carried out at two drug loading percentages, that is, 10 and 20 wt.% of the nanogels. 1,1-Diphenyl-2-picryldrazyl (DPPH) assay was utilized in order to assess the radical scavenging ability of the ellagic acid-loaded nanogels. A drug-loading level of about 2.5 wt.% was achieved with encapsulation efficiency of about 25% at 10 wt.% of the EA w.r.t nanogels, which was found to increase to about 4.7 wt.% with decreased encapsulation efficiency of 23.5% as EA content was increased to 20wt.% of the nanogels. Ellagic acid loading was found to be accompanied with increase in the size of the nanogels from 144.6 ± 39.52nm for neat nanogels to 217.8 ± 105.5 and 633 ± 160.1 nm at 2.5 and 4.7 wt.% drug loading level. The nanogels were found to be capable of scavenging radicals and biocompatible on human cervical cancer cell lines (HeLa cells) at appropriate concentrations.


Journal of Colloid and Interface Science | 2014

PEG-coumarin based biocompatible self-assembled fluorescent nanoaggregates synthesized via click reactions and studies of aggregation behavior.

Gautam Behl; Manisha Sikka; Aruna Chhikara; Madhu Chopra

HYPOTHESIS Click chemistry has found wide application in drug discovery, bioconjugation reactions, polymer chemistry and synthesis of amphiphilic materials with pharmaceutical and biomedical applications. Triazole substitution via a click reaction alters photophysical properties of coumarin. Both coumarin and triazole moieties participate in π-π stacking interactions. Hence it should be possible to prepare fluorescent self-assembly systems by conjugation of coumarin to poly (ethylene glycol) (PEG) via click reactions exhibiting hydrophilic, hydrophobic and π-π stacking interactions. Moreover, the materials can be suitable platforms to assess fluorescence modulation effect of triazole substitution on coumarins. EXPERIMENTS PEG supported coumarin conjugates were synthesized and the fluorescence modulation effect of the formation of triazole on coumarin was assessed. Their aggregation properties were studied by surface tension measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), fluorescence and (1)H NMR spectroscopy. FINDINGS The conjugates were found to form nanoaggregates in the size range of 100-120 nm with a negative free energy of micellization (~-27 kJ mol(-1)) confirming aggregation and self-assembly. The Quantum yield of 4-methyl-7-propargylcoumarin (7P4MC) was enhanced after triazole formation with azide functionalized PEG (methoxy-PEG350 azide). The conjugates were found to exhibit π-π stacking interactions in addition to hydrophilic and hydrophobic interactions. They were found to be biocompatible with human pancreatic cancer cells.


Journal of Biomaterials Science-polymer Edition | 2016

Poly(ethylene glycol)-co-methacrylamide-co-acrylic acid based nanogels for delivery of doxorubicin

Parveen Kumar; Gautam Behl; Manisha Sikka; Aruna Chhikara; Madhu Chopra

Abstract Polymeric nanogels have been widely explored for their potential application as delivery carriers for cancer therapeutics. The ability of nanogels to encapsulate therapeutics by simple diffusion mechanism and the ease of their fabrication to impart target specificity in addition to their ability to get internalized into target cells make them good candidates for drug delivery. The present study aims to investigate the applicability of poly(ethylene glycol)-co-methacrylamide-co-acrylic acid (PMA)-based nanogels as a viable option for the delivery of doxorubicin (DOX). The nanogels were synthesized by free radical polymerization in an inverse mini-emulsion and characterized by nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction and differential scanning calorimetry. DOX was physically incorporated into the nanogels (PMA-DOX) and the mechanism of its in vitro release was studied. TEM experiment revealed spherical morphology of nanogels and the hydrodynamic diameter of the neat nanogels was in the range of 160 ± 46.95 nm. The size of the nanogels increased from 235.1 ± 28.46 to 403.7 ± 89.89 nm with the increase in drug loading capacity from 4.68 ± 0.03 to 13.71 ± 0.01%. The sustained release of DOX was observed upto 80 h and the release rate decreased with increased loading capacity following anomalous release mechanism as indicated by the value of diffusion exponent (n = 0.64–0.75) obtained from Korsmeyer–Peppas equation. Further, cytotoxicity evaluation of PMA-DOX nanogels on HeLa cells resulted in relatively higher efficacy (IC50~5.88 μg/mL) as compared to free DOX (IC50~7.24 μg/mL) thus demonstrating that the preparation is potentially a promising drug delivery carrier.


Aaps Pharmscitech | 2017

Co-delivery of Vorinostat and Etoposide Via Disulfide Cross-Linked Biodegradable Polymeric Nanogels: Synthesis, Characterization, Biodegradation, and Anticancer Activity

Parveen Kumar; Lubna Wasim; Madhu Chopra; Aruna Chhikara

Treatment regimens for cancer patients using single chemotherapeutic agents often lead to undesirable toxicity, drug resistance, reduced uptake etc. Combination of two or more drugs is therefore becoming an imperative strategy to overcome these limitations. A step forward can be taken through delivery of the drugs used in combination via nanoparticles. Co-administration of chemotherapeutic drugs encapsulated in nanoparticles has been shown to result in synergistic effects and enhanced therapeutic efficacy. In present study, we explored the combination treatment of histone deacetylase inhibitor vorinostat (VOR) and topoisomerase II inhibitor etoposide (ETOP). The concurrent combination treatment of VOR and ETOP resulted in synergistic effect on human cervical HeLa cancer cells. VOR and ETOP were encapsulated into poly(ethylene glycol) monomethacrylate (POEOMA)-based disulfide cross-linked nanogels. The nanogels were synthesized using atom transfer radical polymerization (ATRP) via cyclohexane/water inverse mini-emulsion and were degradable in presence of intracellular glutathione (GSH) concentration. Both the drugs were loaded into the nanogels by physical encapsulation method and characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and differential scanning calorimetry (DSC). Both VOR- and ETOP-loaded nanogels showed sustained release profile. Furthermore, combination treatment drugs encapsulated of POEOMA nanogel demonstrated enhanced synergistic cytotoxic effect compared with combination of free drugs. Enhanced synergistic cell killing efficiency of drug-loaded POEOMA nanogels was due to increased apoptosis via caspase 3/7 activation. Therefore, combination of VOR- and ETOP-loaded PEG-based biodegradable nanogels may provide a promising therapy with enhanced anticancer effect.


Biomedicine & Pharmacotherapy | 2017

Development of 1,3,4-oxadiazole thione based novel anticancer agents: Design, synthesis and in-vitro studies

Nalini Yadav; Parveen Kumar; Aruna Chhikara; Madhu Chopra

A series of new 1,3,4-oxadiazole-2(3H)-thione analogues (3a to 3o) have been designed, synthesized and evaluated for their anticancer activity. Four different cancerous cell lines viz. HeLa (cervical), U-87 (glioblastoma), Panc (pancreatic) and MCF-7 (breast) were used to assess the potency of the synthesized compounds as anticancer agents. Among them 3i and 3j showed promising cytotoxicity against HeLa cell line. Further, 3i and 3j successfully inhibited cell cycle progression and displayed cell death in HeLa cells via apoptosis as visualized by Annexin V APC and DNA fragmentation assay. 3i and 3j induced caspase-3 activation, PARP cleavage, increase in expression of proapoptotic protein Bax and decrease in the expression of antiapoptotic protein Bcl-2. Also, 3i and 3j induced overexpression of p21 and decreased expression of cyclin B1 indicating the arrest of cells in G2-M phase of the cell cycle. Therefore, new lead compounds are being suggested having anticancer activity through cell cycle inhibition and apoptosis.


Journal of Biomaterials Science-polymer Edition | 2018

PEG-coumarin nanoaggregates as π–π stacking derived small molecule lipophile containing self-assemblies for anti-tumour drug delivery

Gautam Behl; Parveen Kumar; Manisha Sikka; Laurence Fitzhenry; Aruna Chhikara

Abstract Polymeric self-assemblies formed by non-covalent interactions such as hydrophobic interactions, hydrogen bonding, π–π stacking, host-guest and electrostatic interactions have been utilised widely and exhibit controlled release of encapsulated drug. Beside carrier-carrier interactions, small molecule amphiphiles exhibiting carrier-drug interactions have recently been an area of interest for cancer drug delivery, as most of the hydrophobic anti-tumour drugs are aromatic and exhibit π–π conjugated structure. In the present study PEG-coumarin (PC) conjugates forming self-assembled nanoaggregates were synthesised with PEG (polyethylene glycol) as hydrophilic block and coumarin as small molecule lipophilic segment. Curcumin (CUR) as model conjugated aromatic drug was loaded in to the nanoaggregates via dual hydrophobic and π–π stacking interactions. The interactions between the conjugates and CUR, drug release profile and in vitro anti-tumour efficacy were investigated in detail. CUR-loaded nanoaggregate self-assembly was driven by π–π interactions and a maximum loading level of about 18 wt.% (~60 % encapsulation efficiency) was achieved. The average hydrodynamic diameter (Dav) was in the range of 120–160 nm and a spherical morphology was observed by transmission electron microscopy (TEM). A sustained release of CUR was observed for 90 h. Cytotoxicity evaluation of CUR-loaded nanoaggregates on pancreatic cancer cell lines indicated higher efficacy, IC50 ~11 and ~15 μM as compared to free CUR, IC50 ~14 and ~20 μM on human pancreatic carcinoma (MIA PaCa-2) and human pancreatic duct epithelioid carcinoma (PANC-1) cell lines respectively. PC conjugates provided a new strategy of fabricating nanoparticles for drug delivery and may form the basis for the development of advanced biomaterials in near future.


Quality Assurance Journal | 2009

Opportunities, challenges and benefits of using HACCP as a quality risk management tool in the pharmaceutical industry

Saurabh Dahiya; Roop K. Khar; Aruna Chhikara


Current Biochemical Engineering | 2017

Recent Progress in Combinatorial Solid Phase Synthesis: Techniques, Characterization and its Application in Drug Development

Parveen Kumar; Nalini Yadav; Aruna Chhikara; Madhu Chopra


/data/revues/07533322/v95sC/S0753332217337290/ | 2017

Iconography : Development of 1,3,4-oxadiazole thione based novel anticancer agents: Design, synthesis and in-vitro studies

Nalini Yadav; Parveen Kumar; Aruna Chhikara; Madhu Chopra

Collaboration


Dive into the Aruna Chhikara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge