Aruna Panda
Virginia–Maryland Regional College of Veterinary Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aruna Panda.
Microbial Pathogenesis | 2004
Aruna Panda; Zhuhui Huang; Subbiah Elankumaran; Daniel D. Rockemann; Siba K. Samal
Abstract Newcastle disease virus (NDV) causes a highly contagious and economically important disease in poultry. Viral determinants of NDV virulence are not completely understood. The amino acid sequence at the protease cleavage site of the fusion (F) protein has been postulated as a major determinant of NDV virulence. In this study, we have examined the role of F protein cleavage site sequence in NDV virulence using reverse genetics technology. The sequence G-R-Q-G-R present at the cleavage site of the F protein of avirulent strain LaSota was mutated to R-R-Q-K-R, which is present in the F cleavage site of neurovirulent strain Beaudette C (BC). The resultant mutated LaSota V.F. virus did not require exogenous protease for infectivity in cell culture, indicating that the F protein was cleaved by intracellular proteases. The virulence of the mutant and parental viruses was evaluated in vivo by intracerebral pathogenicity index (ICPI) and intravenous pathogenicity index (IVPI) tests in chickens. Our results showed that the modification of the F protein cleavage site resulted in a dramatic increase in virulence from an ICPI value of 0.00 for LaSota to a value of 1.12 for LaSota V.F. However, the ICPI value of LaSota V.F. was lower than that of BC, which had a value of 1.58. Interestingly, the IVPI tests showed values of 0.00 for both LaSota and LaSota V.F. viruses, compared to the IVPI value of 1.45 of BC. In vitro characteristics of the viruses were also studied. Our results demonstrate that the efficiency of cleavage of the F protein plays an important role if the NDV is delivered directly into the brains of chicks, but there could be other viral factors that probably affect peripheral replication, viremia, or entry into the central nervous system.
Journal of Virology | 2003
Zhuhui Huang; Sateesh Krishnamurthy; Aruna Panda; Siba K. Samal
ABSTRACT Newcastle disease virus (NDV) edits its P gene by inserting one or two G residues at the conserved editing site (UUUUUCCC, genome sense) and transcribes the P mRNA (unedited), the V mRNA (with a +1 frameshift), and the W mRNA (with a +2 frameshift). All three proteins are amino coterminal but vary at their carboxyl terminus in length and amino acid composition. Little is known about the role of the V and W proteins in NDV replication and pathogenesis. We have constructed and recovered two recombinant viruses in which the expression of the V or both the V and W proteins has been abolished. Compared to the parental virus, the mutant viruses showed impaired growth in cell cultures, except in Vero cells. However, transient expression of the carboxyl-terminal portion of the V protein enhanced the growth of the mutant viruses. In embryonated chicken eggs, the parental virus grew to high titers in embryos of different gestational ages, whereas the mutant viruses showed an age-dependent phenomenon, growing to lower titer in more-developed embryos. An interferon (IFN) sensitivity assay showed that the parental virus was more resistant to the antiviral effect of IFN than the mutant viruses. Moreover, infection with the parental virus resulted in STAT1 protein degradation, but not with the mutant viruses. These findings indicate that the V protein of NDV possesses the ability to inhibit alpha IFN and that the IFN inhibitory function lies in the carboxyl-terminal domain. Pathogenicity studies showed that the V protein of NDV significantly contributes to the virus virulence.
Journal of Virology | 2004
Zhuhui Huang; Aruna Panda; Subbiah Elankumaran; Dhanasekaran Govindarajan; Daniel D. Rockemann; Siba K. Samal
ABSTRACT The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) plays a crucial role in the process of infection. However, the exact contribution of the HN gene to NDV pathogenesis is not known. In this study, the role of the HN gene in NDV virulence was examined. By use of reverse genetics procedures, the HN genes of a virulent recombinant NDV strain, rBeaudette C (rBC), and an avirulent recombinant NDV strain, rLaSota, were exchanged. The hemadsorption and neuraminidase activities of the chimeric viruses showed significant differences from those of their parental strains, but heterotypic F and HN pairs were equally effective in fusion promotion. The tissue tropism of the viruses was shown to be dependent on the origin of the HN protein. The chimeric virus with the HN protein derived from the virulent virus exhibited a tissue predilection similar to that of the virulent virus, and vice versa. The chimeric viruses with reciprocal HN proteins either gained or lost virulence, as determined by a standard intracerebral pathogenicity index test of chickens and by the mean death time in chicken embryos (a measure devised to classify these viruses), indicating that virulence is a function of the amino acid differences in the HN protein. These results are consistent with the hypothesis that the virulence of NDV is multigenic and that the cleavability of F protein alone does not determine the virulence of a strain.
Journal of Virology | 2004
Aruna Panda; Subbiah Elankumaran; Sateesh Krishnamurthy; Zhuhui Huang; Siba K. Samal
ABSTRACT The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is an important determinant of its virulence. We investigated the role of each of the four functional N-linked glycosylation sites (G1 to G4) of the HN glycoprotein of NDV on its pathogenicity. The N-linked glycosylation sites G1 to G4 at residues 119, 341, 433, and 481, respectively, of a moderately pathogenic NDV strain Beaudette C (BC) were eliminated individually by site-directed mutagenesis on a full-length cDNA clone of BC. A double mutant (G12) was also created by eliminating the first and second glycosylation sites at residues 119 and 341, respectively. Infectious virus was recovered from each of the cDNA clones of the HN glycoprotein mutants, employing a reverse genetics technique. There was a greater delay in the replication of G4 and G12 mutant viruses than in the parental virus. Loss of glycosylation does not affect the receptor recognition by HN glycoprotein of NDV. The neuraminidase activity of G4 and G12 mutant viruses and the fusogenicity of the G4 mutant virus were significantly lower than those of the parental virus. The fusogenicity of the double mutant virus (G12) was significantly higher than that of the parental virus. Cell surface expression of the G4 virus HN was significantly lower than that of the parental virus. The antigenic reactivities of the mutants to a panel of monoclonal antibodies against the HN protein indicated that removal of glycosylation from the HN protein increased (G1, G3, and G12) or decreased (G2 and G4) the formation of antigenic sites, depending on their location. In standard tests to assess virulence in chickens, all of the glycosylation mutants were less virulent than the parental BC virus, but the G4 and G12 mutants were the least virulent.
PLOS ONE | 2008
Srinivas S. Rao; Wing-Pui Kong; Chih-Jen Wei; Zhi-Yong Yang; Martha Nason; Darrel Styles; Louis J. DeTolla; Aruna Panda; Erin M. Sorrell; Haichen Song; Hongquan Wan; Gloria Ramirez-Nieto; Daniel R. Perez; Gary J. Nabel
Background Sustained outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses. Methodology / Principal Findings The ability of DNA vaccines encoding hemagglutinin (HA) proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 µg DNA given twice either by intramuscular needle injection or with a needle-free device. Conclusions/Significance DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.
Journal of Virology | 2009
Sunil K. Khattar; Yongqi Yan; Aruna Panda; Peter L. Collins; Siba K. Samal
ABSTRACT The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a multifunctional protein that plays a crucial role in virus infectivity. In this study, using the mesogenic strain Beaudette C (BC), we mutated three conserved amino acids thought to be part of the binding/catalytic active site in the HN protein. We also mutated five additional residues near the proposed active site that are nonconserved between BC and the avirulent strain LaSota. The eight recovered NDV HN mutants were assessed for effects on biological activities. While most of the mutations had surprisingly little effect, mutation at conserved residue Y526 reduced the neuraminidase, receptor binding, and fusion activities and attenuated viral virulence in eggs and young birds.
Annals of Plastic Surgery | 2008
Ronald P. Silverman; Nia D. Banks; Louis J. DeTolla; Steven T. Shipley; Aruna Panda; Rigoberto Sanchez; Agnes M. Azimzadeh; Richard N. Pierson; Donghua Wang; Eduardo D. Rodriguez; Luther H. Holton; Stephen T. Bartlett
The purpose of this study was to develop a nonhuman primate model for heterotopic composite tissue facial transplantation in which to study the natural history of facial transplantation and evaluate immunosuppressive regimens. A composite oromandibular facial segment transplant based on the common carotid artery was evaluated. Flaps from 7 cynomolgus monkeys were transplanted to the groins of 7 recipients at the superficial femoral artery and vein. The immunosuppressive regimen consisted of thymoglobulin, rapamycin, and tacrolimus. Allograft survival ranged from 6 to 129 days. Histology performed in the long-term survivor at the time of necropsy revealed extensive inflammation and necrosis of the allograft skin; however, muscle and bone elements were viable, with minimal inflammation. This heterotopic facial transplantation model avoids the potential morbidity of mandibular resection and orthotopic facial transplantation. Our work also concurs with the work of other groups who found that the skin component is the most antigenic.
Infection and Immunity | 2013
Tonia Zangari; Angela R. Melton-Celsa; Aruna Panda; Nadia Boisen; Mark A. Smith; Ivan Tatarov; Louis J. De Tolla; James P. Nataro; Alison D. O'Brien
ABSTRACT In May 2011, a large food-borne outbreak was traced to an unusual O104:H4 enteroaggregative Escherichia coli (EAEC) strain that produced Shiga toxin (Stx) type 2 (Stx2). We developed a mouse model to study the pathogenesis and treatment for this strain and examined the virulence of the isolate for Dutch belted rabbits. O104:H4 strain C227-11 was gavaged into C57BL/6 mice at 109 to 1011 CFU/animal. The infected animals were then given water with ampicillin (Amp; 5 g/liter) ad libitum. The C227-11-infected, Amp-treated C57BL/6 mice exhibited both morbidity and mortality. Kidneys from mice infected with C227-11 showed acute tubular necrosis, a finding seen in mice infected with typical Stx-producing E. coli. We provided anti-Stx2 antibody after infection and found that all of the antibody-treated mice gained more weight than untreated mice and, in another study, that all of the antibody-treated animals lived, whereas 3/8 phosphate-buffered saline-treated mice died. We further compared the pathogenesis of C227-11 with that of an Stx-negative (Stx−) O104:H4 isolate, C734-09, and an Stx2− phage-cured derivative of C227-11. Whereas C227-11-infected animals lost weight or gained less weight over the course of infection and died, mice infected with either of the Stx− isolates did not lose weight and only one mouse died. When the Stx-positive (Stx+) and Stx2− O104:H4 strains were compared in rabbits, greater morbidity and mortality were observed in rabbits infected with the Stx2+ isolates than the Stx2− isolates. In conclusion, we describe two animal models for EAEC pathogenesis, and these studies show that Stx2 is responsible for most of the virulence observed in C227-11-infected mice and rabbits.
Comparative Medicine | 2010
Aruna Panda; Ivan Tatarov; Angela R. Melton-Celsa; Krishnan Kolappaswamy; Edwin H. Kriel; Daniel Petkov; Turhan Coksaygan; Sofie Livio; Charles G. McLeod; James P. Nataro; Alison D. O'Brien; Louis J. DeTolla
Wun-Ju Shieh graduated from Taipei Medical University in 1979. He completed an internal medicine residency and infectious disease subspecialty training in 1986. He received a Master of Public Health from Harvard University in 1987, followed by a Ph.D. in Microbiology & Immunology from Vanderbilt University in 1992. Afterwards, he completed a combined anatomical and clinical pathology residency training at Vanderbilt University Medical Center and an infectious disease pathology fellowship at CDC. He has been working as a medical officer and pathologist at CDC since 1995. He has participated many outbreak investigations, and has published more than 120 papers in peer-review journals. The role of pathology in diagnosis of emerging viral zoonosesChi-Chao Chan earned her M.D. from Johns Hopkins University and ophthalmology residency from Stanford University School of Medicine. She has completed two post-doctoral fellowships: ophthalmic pathology at Wilmer Institute, Johns Hopkins and clinical ocular immunology at National Eye Institute, National Institutes of Health. She is the Chief of Immunopathology Section, Laboratory of Immunology and Head of Histopathology Core, National Eye Institute, the federal government medical research institute in the US. She has published 582 papers in peer-reviewed journals, 51 book chapters, and one textbook. She also serves as an editorial board member for 16 medical journals. Diagnosis of primary vitreoretinal lymphoma, a subtype of primary CNS lymphomaEnterohemorrhagic Escherichia coli (EHEC) produce one or more types of Shiga toxins and are foodborne causes of bloody diarrhea. The prototype EHEC strain, Escherichia coli O157:H7, is responsible for both sporadic cases and serious outbreaks worldwide. Infection with E. coli that produce Shiga toxins may lead to diarrhea, hemorrhagic colitis, or (less frequently) hemolytic uremic syndrome, which can cause acute kidney failure. The exact mechanism by which EHEC evokes intestinal and renal disease has not yet been determined. The development of a readily reproducible animal oral-infection model with which to evaluate the full pathogenic potential of E. coli O157:H7 and assess the efficacy of therapeutics and vaccines remains a research priority. Dutch belted (DB) rabbits are reported to be susceptible to both natural and experimental EHEC-induced disease, and New Zealand white (NZW) rabbits are a model for the intestinal manifestations of EHEC infection. In the current study, we compared the pathology caused by E. coli O157:H7 infection in DB and NZW rabbits. Both breeds of rabbits developed clinical signs of disease and intestinal lesions after experimental infection. In addition, one of the infected DB rabbits developed renal lesions. Our findings provide evidence that both breeds are susceptible to E. coli O157:H7 infection and that both may be useful models for investigating EHEC infections of humans.Lymphocytes play key roles in the chronic inflammation critical for T2D pathogenesis. We have shown T2D patients have an elevated ratio of pro- to anti-inflammatory T cells, and B cells that produce a pro-inflammatory cytokine profile. Thus lymphocytes promote T2D-associated inflammation. Numerous studies implicate the pro-inflammatory CD4+ T cell balance in T2D pathogenesis, but mechanisms that underlie elevated CD4+ T cell inflammation are poorly understood. We explored the possibility that the T2D-associated changes we identified in B cell function regulate T cell inflammation. We show that B cells control the T2D-associated increase in Th17-mediated inflammation in T2D patients and in obese/insulin resistant mice. Surprisingly, the disease-associated ability of B cells to regulate T cell function is contact-dependent, despite evidence that B cell cytokines hyper-secreted in T2D patients activate T cells. In contrast, elevated activation of Th1 cytokines is B cell-independent. We conclude that both T cell-intrinsic and T cell-extrinsic (B cell-dependent) changes regulate T cell inflammation in T2D. These data indicate that B cell depletion may partially curb T2D-associated T cell inflammation, and thus disease pathogenesis; however, combinatorial treatments aimed at multiple inflammatory axes may be required for favorable clinical outcomes.
Journal of General Virology | 2001
Zhuhui Huang; Sateesh Krishnamurthy; Aruna Panda; Siba K. Samal
Collaboration
Dive into the Aruna Panda's collaboration.
Virginia–Maryland Regional College of Veterinary Medicine
View shared research outputs