Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aruna Railkar is active.

Publication


Featured researches published by Aruna Railkar.


Bioorganic & Medicinal Chemistry Letters | 2013

Pyrido[2,3-d]pyrimidines: Discovery and preliminary SAR of a novel series of DYRK1B and DYRK1A inhibitors.

Kevin William Anderson; Yi Chen; Zhi Chen; Romyr Dominique; Kelli Glenn; Yang He; Cheryl Janson; Kin-Chun Luk; Christine Lukacs; Ann Polonskaia; Qi Qiao; Aruna Railkar; Pamela Loreen Rossman; Hongmao Sun; Qing Xiang; Masha Vilenchik; Peter Michael Wovkulich; Xiaolei Zhang

DYRK1B is a kinase over-expressed in certain cancer cells (including colon, ovarian, pancreatic, etc.). Recent publications have demonstrated inhibition of DYRK1B could be an attractive target for cancer therapy. From a data-mining effort, the team has discovered analogues of pyrido[2,3-d]pyrimidines as potent enantio-selective inhibitors of DYRK1B. Cells treated with a tool compound from this series showed the same cellular effects as down regulation of DYRK1B with siRNA. Such effects are consistent with the proposed mechanism of action. Progress of the SAR study is presented.


Journal of Medicinal Chemistry | 2013

Pyrrolopyrazines as selective spleen tyrosine kinase inhibitors.

Fernando Padilla; Niala Bhagirath; Shaoqing Chen; Eric Chiao; David Michael Goldstein; Johannes Cornelius Hermann; Jonathan Hsu; Joshua Kennedy-Smith; Andreas Kuglstatter; Cheng Liao; Wenjian Liu; Lee Edwin Lowrie; Kin Chun Luk; Stephen M. Lynch; John Menke; Linghao Niu; Timothy D. Owens; Counde O'yang; Aruna Railkar; Ryan Craig Schoenfeld; Michelle Slade; Sandra Steiner; Yun-Chou Tan; Armando G. Villaseñor; Ce Wang; Jutta Wanner; Wenwei Xie; Daigen Xu; Xiaohu Zhang; Mingyan Zhou

We describe the discovery of several pyrrolopyrazines as potent and selective Syk inhibitors and the efforts that eventually led to the desired improvements in physicochemical properties and human whole blood potencies. Ultimately, our mouse model revealed unexpected toxicity that precluded us from further advancing this series.


Journal of Medicinal Chemistry | 2010

Discovery, structure-activity relationships, pharmacokinetics, and efficacy of glucokinase activator (2R)-3-cyclopentyl-2-(4-methanesulfonylphenyl)-N-thiazol-2-yl-propionamide (RO0281675).

Nancy-Ellen Haynes; Wendy Lea Corbett; Fred T. Bizzarro; Kevin Richard Guertin; Darryl W. Hilliard; George W. Holland; Robert Francis Kester; Paige E. Mahaney; Lida Qi; Cheryl L. Spence; John Tengi; Mark T. Dvorozniak; Aruna Railkar; Franz M. Matschinsky; Joseph F. Grippo; Joseph Grimsby; Ramakanth Sarabu

Glucokinase (GK) is a glucose sensor that couples glucose metabolism to insulin release. The important role of GK in maintaining glucose homeostasis is illustrated in patients with GK mutations. In this publication, identification of the hit molecule 1 and its SAR development, which led to the discovery of potent allosteric GK activators 9a and 21a, is described. Compound 21a (RO0281675) was used to validate the clinical relevance of targeting GK to treat type 2 diabetes.


Molecular Cancer Therapeutics | 2010

Preclinical In vivo Evaluation of Efficacy, Pharmacokinetics, and Pharmacodynamics of a Novel MEK1/2 Kinase Inhibitor RO5068760 in Multiple Tumor Models

Sherif Daouti; Brian Higgins; Kenneth Kolinsky; Kathryn Packman; Huisheng Wang; John Anthony Moliterni; Nicholas John Silvester Huby; Nader Fotouhi; Mei Liu; Petra Goelzer; Harpreet K. Sandhu; Jia Kui Li; Aruna Railkar; David C. Heimbrook; Huifeng Niu

Targeting the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway represents a promising anticancer strategy. Recently, we have reported a novel class of potent and selective non–ATP-competitive MEK1/2 inhibitors with a unique structure and mechanism of action. RO5068760 is a representative of this class showing significant efficacy in a broad spectrum of tumors with aberrant mitogen-activated protein kinase pathway activation. To understand the relationship between systemic exposures and target (MEK1/2) inhibition as well as tumor growth inhibition, the current study presents a detailed in vivo characterization of efficacy, pharmacokinetics, and pharmacodynamics of RO5068760 in multiple xenograft tumor models. For inhibition of MEK1/2 as measured by the phosphorylated ERK levels, the estimated EC50s in plasma were 1.36 μmol/L (880 ng/mL) and 3.35 μmol/L (2168 ng/mL) in LOX melanoma and HT-29 colorectal cancer models, respectively. A similar EC50 (1.41 μmol/L or 915 ng/mL) was observed in monkey peripheral blood lymphocytes. To achieve tumor growth inhibition (≥90%), an average plasma drug concentration of 0.65 or 5.23 μmol/L was required in B-RafV600E or K-Ras mutant tumor models, respectively, which were remarkably similar to the IC90 values (0.64 or 4.1 μmol/L) determined in vitro for cellular growth inhibition. With equivalent in vivo systemic exposures, RO5068760 showed superior efficacy in tumors harboring B-RafV600E mutation. The plasma concentration time profiles indicate that constant p-ERK suppression (>50%) may not be required for optimal efficacy, especially in highly responsive tumors. This study may facilitate future clinical trial design in using biochemical markers for early proof of mechanism and in selecting the right patients and optimal dose regimen. Mol Cancer Ther; 9(1); 134–44


European Journal of Pharmaceutical Sciences | 2014

Applications of a 7-day Caco-2 cell model in drug discovery and development.

Ying Peng; Preeti Yadava; Aki T. Heikkinen; Neil Parrott; Aruna Railkar

Oral delivery is the preferred route of administration and therefore good absorption after oral dosing is a prerequisite for a compound to be successful in the clinic. The prediction of oral bioavailability from in vitro permeability assays is thus a valuable tool during drug discovery and development. Caco-2 cell monolayers mimic the human intestinal epithelium in many aspects. These monolayers form tight junctions between cells and have been widely used as a model of human intestinal absorption. Caco-2 cells also express a variety of transporter proteins although the transformed nature of the cells results in unpredictable differentiation markers, transport properties and enzyme expression. Thus various modifications of the Caco-2 assay are used in laboratories across the globe. The purpose of this paper is to provide an overview of a time and resource saving 7-day Caco-2 assay protocol. We also discuss the impact of various experimental conditions on permeability measurements and its applications during lead optimization in early discovery and for clinical candidate characterization, specifically for prediction of absorption in human, at a later stage in drug development.


Journal of Medicinal Chemistry | 2014

Discovery of N-[4-[6-tert-Butyl-5-methoxy-8-(6-methoxy-2-oxo-1H-pyridin-3-yl)-3-quinolyl]phenyl]methanesulfonamide (RG7109), a Potent Inhibitor of the Hepatitis C Virus NS5B Polymerase

Francisco Xavier Talamas; Sarah C. Abbot; Shalini Anand; Ken A. Brameld; David S. Carter; Jun Chen; Dana E. Davis; Javier de Vicente; Amy Fung; Leyi Gong; Seth F. Harris; Petra Inbar; Sharada Shenvi Labadie; Eun Kyoung Lee; Remy Lemoine; Sophie Le Pogam; Vincent Leveque; Jim Li; Joel McIntosh; Isabel Najera; Jaehyeon Park; Aruna Railkar; Sonal Rajyaguru; Michael Sangi; Ryan Craig Schoenfeld; Leanna R. Staben; Yun-Chou Tan; Joshua Paul Gergely Taygerly; Armando G. Villaseñor; Paul Weller

In the past few years, there have been many advances in the efforts to cure patients with hepatitis C virus (HCV). The ultimate goal of these efforts is to develop a combination therapy consisting of only direct-antiviral agents (DAAs). In this paper, we discuss our efforts that led to the identification of a bicyclic template with potent activity against the NS5B polymerase, a critical enzyme on the life cycle of HCV. In continuation of our exploration to improve the stilbene series, the 3,5,6,8-tetrasubstituted quinoline core was identified as replacement of the stilbene moiety. 6-Methoxy-2(1H)-pyridone was identified among several heterocyclic headgroups to have the best potency. Solubility of the template was improved by replacing a planar aryl linker with a saturated pyrrolidine. Profiling of the most promising compounds led to the identification of quinoline 41 (RG7109), which was selected for advancement to clinical development.


Molecular Pharmaceutics | 2013

In vitro to in vivo extrapolation and physiologically based modeling of cytochrome P450 mediated metabolism in beagle dog gut wall and liver.

Aki T. Heikkinen; Stephen Fowler; Lynn Gray; Jia Li; Ying Peng; Preeti Yadava; Aruna Railkar; Neil Parrott

The beagle dog is a widely used in vivo model to guide clinical formulation development and to explore the potential for food effects. However, the results in dogs are often not directly translatable to humans. Consequently, a physiologically based modeling strategy has been proposed, using the dog as a validation step to verify model assumptions before making predictions in humans. One current weakness in this strategy is the lack of validated tools to incorporate gut wall metabolism into the dog model. In this study, in vitro to in vivo extrapolation factors for CYP2B11 and CYP3A12 mediated metabolism were established based on tissue enzyme abundance data reported earlier. Thereafter, physiologically based modeling of intestinal absorption in beagle dog was conducted in GastroPlus using V(max) and K(m) determined in recombinant enzymes as inputs for metabolic turnover. The predicted fraction of absorbed dose escaping the gut wall metabolism (F(g)) of all five reference compounds studied (domperidone, felodipine, nitrendipine, quinidine, and sildenafil) were within a two-fold range of the value estimated from in vivo data at single dose levels. However, further in vivo studies and analysis of the dose-dependent pharmacokinetics of felodipine and nitrendipine showed that more work is required for robust forecasting of nonlinearities. In conclusion, this study demonstrates an approach for prediction of the gut wall extraction of CYP substrates in the beagle dog, thus enhancing the value of dog studies as a component in a strategy for the prediction of human pharmacokinetics.


Journal of Medicinal Chemistry | 2014

Using Ovality to Predict Nonmutagenic, Orally Efficacious Pyridazine Amides as Cell Specific Spleen Tyrosine Kinase Inhibitors

Matthew C. Lucas; Niala Bhagirath; Eric Chiao; David Michael Goldstein; Johannes Cornelius Hermann; Pei-Yuan Hsu; Stephan Kirchner; Joshua Kennedy-Smith; Andreas Kuglstatter; Christine Lukacs; John Menke; Linghao Niu; Fernando Padilla; Ying Peng; Liudmila Polonchuk; Aruna Railkar; Michelle Slade; Michael Soth; Daigen Xu; Preeti Yadava; Calvin Yee; Mingyan Zhou; Cheng Liao

Inhibition of spleen tyrosine kinase has attracted much attention as a mechanism for the treatment of cancers and autoimmune diseases such as asthma, rheumatoid arthritis, and systemic lupus erythematous. We report the structure-guided optimization of pyridazine amide spleen tyrosine kinase inhibitors. Early representatives of this scaffold were highly potent and selective but mutagenic in an Ames assay. An approach that led to the successful identification of nonmutagenic examples, as well as further optimization to compounds with reduced cardiovascular liabilities is described. Select pharmacokinetic and in vivo efficacy data are presented.


ACS Medicinal Chemistry Letters | 2012

Identification of an Adamantyl Azaquinolone JNK Selective Inhibitor.

Nancy-Ellen Haynes; Nathan Robert Scott; Li C. Chen; Cheryl Janson; Jia Kui Li; Christine Lukacs; Aruna Railkar; Effie Tozzo; Toni Whittard; Nicholas F. Brown; Adrian Wai-Hing Cheung

3-[4-((1S,2S,3R,5S,7S)-5-Hydroxyadamantan-2-ylcarbamoyl)benzyl]-4-oxo-1-phenyl-1,4-dihydro-[1,8]naphthyridine-2-carboxylic acid methyl ester (4) was identified as a novel, druglike and selective quinolone pan JNK inhibitor. In this communication, some of the structure-activity relationship of the azaquinolone analogues leading to 4 is discussed. The focus is on how changes at the amide functionality affected the biochemical potency, cellular potency, metabolic properties, and solubility of this class of JNK inhibitors. Optimization of these properties led to the identification of the adamantyl analogue, 4. 4 achieved proof of mechanism in both rat and mouse TNF-α challenge models.


Bioorganic & Medicinal Chemistry Letters | 2013

Identification of N-acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives and their orally active prodrug esters as dual-acting alpha4-beta1 and alpha4-beta7 receptor antagonists.

Achyutharao Sidduri; Jefferson Wright Tilley; Jianping Lou; Nadine Tare; Gary Cavallo; Karl Frank; Anjula Pamidimukkala; Duk Soon Choi; Louise Gerber; Aruna Railkar; Louis M. Renzetti

N-Acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives of type 4 were designed to replace the 2,6-dichlorobenzoylamine portion of compound 1 in order to identify novel compounds with improved potency against α4-integrins. Several derivatives were identified as very potent dual-acting α4-integrin, α4β1 and α4β7 antagonists. Investigation of a limited number of prodrug esters led to the discovery of the ethyl ester prodrug 42, which demonstrated good intestinal fluid stability and good permeability. Despite low solubility, 42 gave acceptable blood levels of 30 when dosed orally in non-human primates. Additionally, 42 had an overall excellent profile and was selected for clinical trials. Investigation of N-acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives led to the discovery of several very potent dual-acting α4-integrin antagonists. Ethyl ester prodrug 42 advanced to human clinical trials based on the excellent intestinal fluid stability, good permeability and superior efficacy in non-human primates.

Collaboration


Dive into the Aruna Railkar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge