Arundhuti Ganguly
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arundhuti Ganguly.
Medical Physics | 2006
Rebecca Fahrig; Robert L. Dixon; Thomas Payne; Richard L. Morin; Arundhuti Ganguly; Norbert Strobel
We assess dose and image quality of a state-of-the-art angiographic C-arm system (Axiom Artis dTA, Siemens Medical Solutions, Forchheim, Germany) for three-dimensional neuro-imaging at various dose levels and tube voltages and an associated measurement method. Unlike conventional CT, the beam length covers the entire phantom, hence, the concept of computed tomography dose index (CTDI) is not the metric of choice, and one can revert to conventional dosimetry methods by directly measuring the dose at various points using a small ion chamber. This method allows us to define and compute a new dose metric that is appropriate for a direct comparison with the familiar CTDIw of conventional CT. A perception study involving the CATPHAN 600 indicates that one can expect to see at least the 9 mm inset with 0.5% nominal contrast at the recommended head-scan dose (60 mGy) when using tube voltages ranging from 70 kVp to 125 kVp. When analyzing the impact of tube voltage on image quality at a fixed dose, we found that lower tube voltages gave improved low contrast detectability for small-diameter objects. The relationships between kVp, image noise, dose, and contrast perception are discussed.
International Journal of Biomedical Imaging | 2011
Andreas Fieselmann; Markus Kowarschik; Arundhuti Ganguly; Joachim Hornegger; Rebecca Fahrig
Deconvolution-based analysis of CT and MR brain perfusion data is widely used in clinical practice and it is still a topic of ongoing research activities. In this paper, we present a comprehensive derivation and explanation of the underlying physiological model for intravascular tracer systems. We also discuss practical details that are needed to properly implement algorithms for perfusion analysis. Our description of the practical computer implementation is focused on the most frequently employed algebraic deconvolution methods based on the singular value decomposition. In particular, we further discuss the need for regularization in order to obtain physiologically reasonable results. We include an overview of relevant preprocessing steps and provide numerous references to the literature. We cover both CT and MR brain perfusion imaging in this paper because they share many common aspects. The combination of both the theoretical as well as the practical aspects of perfusion analysis explicitly emphasizes the simplifications to the underlying physiological model that are necessary in order to apply it to measured data acquired with current CT and MR scanners.
Journal of Vascular and Interventional Radiology | 2005
Stephen T. Kee; Arundhuti Ganguly; Bruce L. Daniel; Zhifei Wen; Kim Butts; Anne Shimikawa; Norbert J. Pelc; Rebecca Fahrig; Michael D. Dake
PURPOSE To evaluate the performance of a combined hybrid radiography/magnetic resonance (MR) unit to guide portal vein (PV) puncture during human transjugular intrahepatic portosystemic shunt (TIPS) creation. MATERIALS AND METHODS Fourteen patients undergoing TIPS creation were studied during standard clinical applications. Patients were anesthetized and then positioned in an open MR unit containing a flat-panel radiographic fluoroscopic unit. With use of a combination of fluoroscopy and MR imaging, the PV was accessed and the TIPS procedure was performed. A noncovered nitinol stent or a covered stent-graft was placed in the TIPS tract. Number of punctures required, total procedure time, fluoroscopy time, procedural success rate, complications, and ultrasonographic and clinical follow-up were recorded. RESULTS Clinical success was obtained in 13 of 14 patients. In one patient, extrahepatic puncture of the PV occurred, resulting in hemorrhage and requiring placement of a covered stent to control the bleeding. The mean number of punctures required to access the PV was 2.6 +/- 1.7, and the total procedure time was 2.5 hours +/- 0.6. Mean fluoroscopy time was 22.3 minutes +/- 5.5. Results of clinical and ultrasonographic follow-up compare favorably to previously published reports. CONCLUSION TIPS creation with a combination hybrid radiography/MR unit is feasible and may reduce the number of needle passes required and radiation exposure, with similar overall outcomes compared with studies reported in the literature.
American Journal of Neuroradiology | 2011
Arundhuti Ganguly; Andreas Fieselmann; Michael P. Marks; Jarrett Rosenberg; Jan Dr. Boese; Yu Deuerling-Zheng; Matus Straka; Greg Zaharchuk; Roland Bammer; Rebecca Fahrig
BACKGROUND AND PURPOSE: CTP imaging in the interventional suite could reduce delays to the start of image-guided interventions and help determine the treatment progress and end point. However, C-arms rotate slower than clinical CT scanners, making CTP challenging. We developed a cerebral CTP protocol for C-arm CBCT and evaluated it in an animal study. MATERIALS AND METHODS: Five anesthetized swine were imaged by using C-arm CBCT and conventional CT. The C-arm rotates in 4.3 seconds plus a 1.25-second turnaround, compared with 0.5 seconds for clinical CT. Each C-arm scan had 6 continuous bidirectional sweeps. Multiple scans each with a different delay to the start of an aortic arch iodinated contrast injection and a novel image reconstruction algorithm were used to increase temporal resolution. Three different scan sets (consisting of 6, 3, or 2 scans) and 3 injection protocols (3-mL/s 100%, 3-mL/s 67%, and 6-mL/s 50% contrast concentration) were studied. CBF maps for each scan set and injection were generated. The concordance and Pearson correlation coefficients (ρ and r) were calculated to determine the injection providing the best match between the following: the left and right hemispheres, and CT and C-arm CBCT. RESULTS: The highest ρ and r values (both 0.92) for the left and right hemispheres were obtained by using the 6-mL 50% iodinated contrast concentration injection. The same injection gave the best match for CT and C-arm CBCT for the 6-scan set (ρ = 0.77, r = 0.89). Some of the 3-scan and 2-scan protocols provided matches similar to those in CT. CONCLUSIONS: This study demonstrated that C-arm CBCT can produce CBF maps that correlate well with those from CTP.
Medical Physics | 2003
Arundhuti Ganguly; Stephen Rudin; Daniel R. Bednarek; Kenneth R. Hoffmann
A micro-angiographic detector was designed and its performance was previously tested to evaluate its feasibility as an improvement over current x-ray detectors for neuro-interventional imaging. The detector was shown to have a modulation transfer function value of about 2% at the Nyquist frequency of 10 cycles/mm and a zero frequency detective quantum efficiency [DQE(0)] value of about 55%. An assessment of the system was required to evaluate whether the current system was performing at its full potential and to determine if any of its components could be optimized to further improve the output. For the purpose, in this study, the parallel cascade theory was used to analyze the performance of the detector under neuro-angiographic conditions by studying the output at the various stages in the imaging chain. A simple model for the spread of light in the CsI(Tl) entrance phosphor was developed and the resolution degradation due to K-fluorescence absorption was calculated. The total gain of the system was found to result in 21 e(-) (rms) detected at the charge coupled device per absorbed x-ray photon. The gain and the spread of quanta in the imaging chain were used to calculate theoretically the DQE using the parallel cascade model. The results of the model-based calculations matched fairly well with the experimental data previously obtained. This model was then used to optimize the phosphor thickness for the detector. The results showed that the area under the DQE curve had a maximum value at 150 microm of CsI(Tl), though when weighted by the squared signal in frequency space of a 100-microm-diam iodinated vessel, the integral DQE reached a maximum at 250 microm of CsI(Tl). Further, possible locations for gain increase in the imaging chain were determined, and the output of the improved system was simulated. Thus a theoretical analysis for the micro-angiographic detector was performed to better assess its potential.
Journal of Vascular and Interventional Radiology | 2011
N. Kothary; M. Abdelmaksoud; A. Tognolini; Rebecca Fahrig; Jarrett Rosenberg; David M. Hovsepian; Arundhuti Ganguly; John D. Louie; William T. Kuo; Gloria L. Hwang; A.K. Holzer; Daniel Y. Sze; Lawrence V. Hofmann
PURPOSE To prospectively evaluate the impact of C-arm CT on radiation exposure to hepatocellular carcinoma (HCC) patients treated by chemoembolization. MATERIALS AND METHODS Patients with HCC (N = 87) underwent digital subtraction angiography (DSA; control group) or combined C-arm CT/DSA (test group) for chemoembolization. Dose-area product (DAP) and cumulative dose (CD) were measured for guidance and treatment verification. Contrast agent volume and C-arm CT utility were also measured. RESULTS The marginal DAP increase in the test group was offset by a substantial (50%) decrease in CD from DSA. Use of C-arm CT allowed reduction of DAP and CD from DSA imaging (P = .007 and P = .017). Experienced operators were more efficient in substituting C-arm CT for DSA, resulting in a negligible increase (7.5%) in total DAP for guidance, compared with an increase of 34% for all operators (P = .03). For treatment verification, DAP from C-arm CT exceeded that from DSA, approaching that of conventional CT. The test group used less contrast medium (P = .001), and C-arm CT provided critical or supplemental information in 20% and 17% of patients, respectively. CONCLUSIONS Routine use of C-arm CT can increase stochastic risk (DAP) but decrease deterministic risk (CD) from DSA. However, the increase in DAP is operator-dependent, thus, with experience, it can be reduced to under 10%. C-arm CT provides information not provided by DSA in 33% of patients, while decreasing the use of iodinated contrast medium. As with all radiation-emitting modalities, C-arm CT should be used judiciously.
IEEE Transactions on Medical Imaging | 2012
Andreas Fieselmann; Arundhuti Ganguly; Yu Deuerling-Zheng; Michael Zellerhoff; Christopher Rohkohl; Jan Boese; Joachim Hornegger; Rebecca Fahrig
Tissue perfusion measurement during catheter-guided stroke treatment in the interventional suite is currently not possible. In this work, we present a novel approach that uses a C-arm angiography system capable of computed tomography (CT)-like imaging (C-arm CT) for this purpose. With C-arm CT one reconstructed volume can be obtained every 4-6 s which makes it challenging to measure the flow of an injected contrast bolus. We have developed an interleaved scanning (IS) protocol that uses several scan sequences to increase temporal sampling. Using a dedicated 4-D reconstruction approach based on partial reconstruction interpolation (PRI) we can optimally process our data. We evaluated our combined approach (IS-PRI) with simulations and a study in five healthy pigs. In our simulations, the cerebral blood flow values (unit: ml/100 g/min) were 60 (healthy tissue) and 20 (pathological tissue). For one scan sequence the values were estimated with standard deviations of 14.3 and 2.9, respectively. For two interleaved sequences the standard deviations decreased to 3.6 and 1.5, respectively. We used perfusion CT to validate the in vivo results. With two interleaved sequences we achieved promising correlations ranging from r=0.63 to r=0.94. The results suggest that C-arm CT tissue perfusion imaging is feasible with two interleaved scan sequences.
Journal of Vascular and Interventional Radiology | 2011
Arundhuti Ganguly; Jeffrey Simons; Alex Schneider; Benjamin Keck; Nathan R. Bennett; Robert J. Herfkens; Sheila M. Coogan; Rebecca Fahrig
PURPOSE The authors have developed a direct method to study femoral artery stent deformations in vivo. A previously described imaging and analysis approach based on a calibrated phantom was used to examine stents in human volunteers treated for atherosclerotic disease. In this pilot study, forces on stents were evaluated under different in-vivo flexion conditions. MATERIALS AND METHODS The optimized imaging protocol for imaging with a C-arm computed tomography system was first verified in an in-vivo porcine stent model. Human data were obtained by imaging 13 consenting volunteers with stents in femoral vessels. The affected leg was imaged in straight and bent positions to observe stent deformations. Semiautomatic software was used to calculate the changes in bending, extension, and torsion on the stents for the two positions. RESULTS For the human studies, tension and bending calculation were successful. Bending was found to compress stent lengths by 4% ± 3% (-14.2 to 1.5 mm), increase their average eccentricity by 10% ± 9% (0.12 to -0.16), and change their mean curvature by 27% ± 22% (0 to -0.005 mm(-1)). Stents with the greatest change in eccentricity and curvature were located behind the knee or in the pelvis. Torsion calculations were difficult because the stents were untethered and are symmetric. In addition, multiple locations in each stent underwent torsional deformations. CONCLUSIONS The imaging and analysis approach developed based on calibrated in vitro measurements was extended to in-vivo data. Bending and tension forces were successfully evaluated in this pilot study.
Medical Physics | 2005
Rebecca Fahrig; Zhifei Wen; Arundhuti Ganguly; Giovanni DeCrescenzo; John A. Rowlands; Grant M. Stevens; R. F. Saunders; Norbert J. Pelc
Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo™ flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5T Signa SP™) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.
Medical Physics | 2006
Lukasz Brzozowski; Arundhuti Ganguly; Mihaela Pop; Zhifei Wen; Robert M. Bennett; Rebecca Fahrig; John A. Rowlands
A next-generation interventional guidance system is proposed that will enable intraprocedural access to both x-ray and magnetic resonance imaging (MRI) modalities. This closed bore XMR (CBXMR) system is comprised of a conventional radiographic rotating anode x-ray tube and a direct conversion flat panel detector on a rotating gantry positioned adjacent to the bore of a 1.5 T MRI. To assess the feasibility of such a system, we have investigated the degree of compatibility between the x-ray components and the MRI. For /-->B(ext)/ < 200 G the effect on the radiographic tube motor was negligible regardless of the orientation of -->B(ext) with respect to the motor axis of rotation--the frequency of anode rotation remained within 6% of the 3400 rpm frequency measured at 0 G. For /-->B(ext)/ >2400 G the anode slowed down to below 2400 rpm at all orientations. At intermediate B(ext), the frequency of rotation varied between 2400 and 3200 rpm, showing a strong dependence on orientation, with -->B(ext) perpendicular to the tube axis having a much stronger effect on the rotation frequency than -->B(ext) parallel to the tube axis. In contrast to the effect of -->B(ext) on the induction motor, parallel -->B(ext) had a stronger detrimental effect on the cathode-anode electron beam, whose path was at 16 degrees to the tube axis, than the perpendicular -->B(ext). Parallel -->B(ext) of several hundred Gauss had a defocusing effect on the x-ray focal spot. -->B(ext) perpendicular to the electron beam shifted the beam without significant defocusing. We have determined that the direct conversion flat panel detector (FPD) technology is not intrinsically sensitive to -->B(ext), and that the modifications required to make the proposed FPDs MRI compatible are minimal. The homogeneity of the MRI signal in the normal field of view was not significantly degraded by the presence of these x-ray components in the vicinity of the MRI bore entrance.