Arunesh Mishra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arunesh Mishra.
acm special interest group on data communication | 2003
Arunesh Mishra; Minho Shin; William A. Arbaugh
IEEE 802.11 based wireless networks have seen rapid growth and deployment in the recent years. Critical to the 802.11 MAC operation, is the handoff function which occurs when a mobile node moves its association from one access point to another. In this paper, we present an empirical study of this handoff process at the link layer, with a detailed breakup of the latency into various components. In particular, we show that a MAC layer function - probe is the primary contributor to the overall handoff latency. In our study, we observe that the latency is significant enough to affect the quality of service for many applications (or network connections). Further we find variations in the latency from one hand-off to another as well as with APs and STAs used from different vendors. Finally, we discuss optimizations on the probe phase which can potentially reduce the probe latency by as much as 98% (and a minimum of 12% in our experiments). Based on the study, we draw some guidelines for future handoff schemes.
Mobile Computing and Communications Review | 2005
Arunesh Mishra; Suman Banerjee; William A. Arbaugh
We propose techniques to improve the usage of wireless spectrum in the context of wireless local area networks (WLANs) using new channel assignment methods among interfering Access Points (APs). We identify new ways of channel re-use that are based on realistic interference scenarios in WLAN environments. We formulate a weighted variant of the graph coloring problem that takes into account realistic channel interference observed in wireless environments, as well as the impact of such interference on wireless users. We prove that the weighted graph coloring problem is NP-hard and propose scalable distributed algorithms that achieve significantly better performance than existing techniques for channel assignment. We evaluate our algorithms through extensive simulations and experiments over an in-building wireless testbed.
international conference on computer communications | 2004
Arunesh Mishra; Minho Shin; W.A. Arbaush
User mobility in wireless data networks is increasing because of technological advances, and the desire for voice and multimedia applications. These applications, however, require fast handoffs between base stations to maintain the quality of the connections. Previous work on context transfer for fast handoffs has focused on reactive methods, i.e. the context transfer occurs after the mobile station has associated with the next base station or access router. In this paper, we describe the use of a novel and efficient data structure, neighbor graphs, which dynamically captures the mobility topology of a wireless network as a means for prepositioning the stations context ensuring that the stations context always remains one hop ahead. From experimental and simulation results, we find that the use of neighbor graphs reduces the layer 2 handoff latency due to reassociation by an order of magnitude from 15.37ms to 1.69ms, and that the effectiveness of the approach improves dramatically as user mobility increases.
measurement and modeling of computer systems | 2006
Arunesh Mishra; Vivek Shrivastava; Suman Banerjee; William A. Arbaugh
Many wireless channels in different technologies are known to have partial overlap. However, due to the interference effects among such partially overlapped channels, their simultaneous use has typically been avoided. In this paper, we present a first attempt to model partial overlap between channels in a systematic manner. Through the model, we illustrate that the use of partially overlapped channels is not always harmful. In fact, a careful use of some partially overlapped channels can often lead to significant improvements in spectrum utilization and application performance. We demonstrate this through analysis as well as through detailed application-level and MAC-level measurements. Additionally, we illustrate the benefits of our developed model by using it to directly enhance the performance of two previously proposed channel assignment algorithms --- one in the context of wireless LANs and the other in the context of multi-hop wireless mesh networks. Through detailed simulations, we show that use of partially overlapped channels in both these cases can improve end-to-end application throughput by factors between 1.6 and 2.7 in different scenarios, depending on wireless node density. We conclude by observing that the notion of partial overlap can be the right model of flexibility to design efficient channel access mechanisms in the emerging software radio platforms.
international conference on mobile systems, applications, and services | 2004
Minho Shin; Arunesh Mishra; William A. Arbaugh
The 802.11 IEEE Standard has enabled low cost and effective wireless LAN services (WLAN). With the sales and deployment of WLAN based networks exploding, many people believe that they will become the fourth generation cellular system (4G) or a major portion of it. However, the small cell size of WLAN creates frequent hand-offs for mobile users. If the latency of these hand-offs is high, as previous studies have shown, then the users of synchronous multimedia applications such as voice over IP (VoIP) will experience excessive jitter. The dominating factor in WLAN hand-offs has been shown to be the discovery of the candidate set of next access points. In this paper, we describe the use of a novel and efficient discovery method using neighbor graphs and non-overlap graphs. Our method reduces the total number of probed channels as well as the total time spent waiting on each channel. Our implementation results show that this approach reduces the overall probe time significantly when compared to other approaches. Furthermore, simulation results show that the effectiveness of our method improves as the number of non-overlapping channels increases, such as in the 5 GHz band used by the IEEE 802.11a standard.
IEEE Wireless Communications | 2004
Arunesh Mishra; Minho Shin; Nick L. Petroni Jr.; T.C. Clancy; William A. Arbaugh
User mobility in wireless data networks is increasing because of technological advances, and the desire for voice and multimedia applications. These applications, however, require that handoffs between base stations (or access points) be fast to maintain the quality of the connections. In this article we introduce a novel data structure, the neighbor graph, that dynamically captures the mobility topology of a wireless network. We show how neighbor graphs can be utilized to obtain a 99 percent reduction in the authentication time of an IEEE 802.11 handoff (full EAP-TLS) by proactively distributing necessary key material one hop ahead of the mobile user. We also present a reactive method for fast authentication that requires only firmware changes to access points and hence can easily be deployed on existing wireless networks.
ieee international conference computer and communications | 2006
Arunesh Mishra; Vladimir Brik; Suman Banerjee; Aravind Srinivasan; William A. Arbaugh
We propose an efficient client-based approach for channel management (channel assignment and load balancing) in 802.11-based WLANs that lead to better usage of the wireless spectrum. This approach is based on a “conflict set coloring” formulation that jointly performs load balancing along with channel assignment. Such a formulation has a number of advantages. First, it explicitly captures interference effects at clients. Next, it intrinsically exposes opportunities for better channel re-use. Finally, algorithms based on this formulation do not depend on specific physical RF models and hence can be applied efficiently to a wide-range of in-building as well as outdoor scenarios. We have performed extensive packet-level simulations and measurements on a deployed wireless testbed of 70 APs to validate the performance of our proposed algorithms. We show that in addition to single network scenarios, the conflict set coloring formulation is well suited for channel assignment where multiple wireless networks share and contend for spectrum in the same physical space. Our results over a wide range of both simulated topologies and in-building testbed experiments indicate that our approach improves application level performance at the clients by upto three times (and atleast 50%) in comparison to current best-known techniques.
acm/ieee international conference on mobile computing and networking | 2006
Arunesh Mishra; Vivek Shrivastava; Dheeraj Agrawal; Suman Banerjee; Samrat Ganguly
Wireless 802.11 hotspots have grown in an uncoordinated fashion with highly variable deployment densities. Such uncoordinated deployments, coupled with the difficulty of implementing coordination protocols, has often led to conflicting configurations (e.g., in choice of transmission power and channel of operation) among the corresponding Access Points (APs). Overall, such conflicts cause both unpredictable network performance and unfairness among clients of neighboring hotspots. In this paper, we focus on the fairness problem for uncoordinated deployments. We study this problem from the channel assignment perspective. Our solution is based on the notion of channel-hopping, and meets all the important design considerations for control methods in uncoordinated deployments - distributed in nature, minimal to zero coordination among APs belonging to different hotspots, simple to implement, and interoperable with existing standards. In particular, we propose a specific algorithm called MAXchop, which works efficiently when using only non-overlapping wireless channels, but is particularly effective in exploiting partially-overlapped channels that have been proposed in recent literature. We also evaluate how our channel assignment approach complements previously proposed carrier sensing techniques in providing further performance improvements. Through extensive simulations on real hotspot topologies and evaluation of a full implementation of this technique, we demonstrate the efficacy of these techniques for not only fairness, but also the aggregate throughput, metrics.We believe that this is the first work that brings into focus the fairness properties of channel hopping techniques and we hope that the insights from this research will be applied to other domains where a fair division of a systems resources is an important consideration.
international conference on computer communications | 2008
Shravan K. Rayanchu; Arunesh Mishra; Dheeraj Agrawal; Sharad Saha; Suman Banerjee
It is well known that a packet loss in 802.11 can happen either due to collision or an insufficiently strong signal. However, discerning the exact cause of a packet loss, once it occurs, is known to be quite difficult. In this paper we take a fresh look at this problem of wireless packet loss diagnosis for 802.11-based communication and propose a promising technique called COLLIE. COLLIE performs loss diagnosis by using newly designed metrics that examine error patterns within a physical-layer symbol in order to expose statistical differences between collision and weak signal based losses. We implement COLLIE through custom driver-level modifications in Linux and evaluate its performance experimentally. Our results demonstrate that it has an accuracy ranging between 60-95% while allowing a false positive rate of up to 2%. We also demonstrate the use of COLLIE in subsequent link adaptations in both static and mobile wireless usage scenarios through measurements on regular laptops and the Netgear SPH101 Voice-over-WiFi phone. In these experiments, COLLIE led to throughput improvements of 20- 60% and reduced retransmission related costs by 40% depending upon the channel conditions.
internet measurement conference | 2005
Arunesh Mishra; Eric Rozner; Suman Banerjee; William A. Arbaugh
Interference has always been considered as an unavoidable peril in wireless networks. A single data transmission is useful to some nodes and becomes interference to others. Based on channel of origin, interference can be categorized into co-channel (from transmissions on the same channel as the receiver) and adjacent-channel (transmissions on adjacent and overlapping channels). In this paper, we define specific mechanisms that can transform partially overlapped channels into an advantage, instead of a peril. We construct simple analytical and empirical models of such interference occurring in IEEE 802.11 networks, and illustrate two scenarios where such interference can be exploited. First, we apply partially overlapping channels to improve spatial channel re-use in Wireless LANs (WLANs). Second, we leverage such channels to enable nodes with a single radio interface to communicate more efficiently with their peers in 802.11 ad-hoc mode potentially using multi-hop paths. We evaluate both capabilities through testbed measurements.