Arunima K. Singh
National Institute of Standards and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arunima K. Singh.
Journal of Physical Chemistry Letters | 2015
Arunima K. Singh; Kiran Mathew; Houlong L. Zhuang; Richard G. Hennig
Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.
ACS Nano | 2013
Jeonghyun Hwang; Moonkyung Kim; Dorr Campbell; Hussain Alsalman; Joon Young Kwak; Shriram Shivaraman; Arthur R. Woll; Arunima K. Singh; Richard G. Hennig; Sandeep Gorantla; Mark H. Rümmeli; Michael G. Spencer
van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH(4) partial pressure, growth temperature, and H(2)/CH(4) ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm(2)/V·s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10-10] || sapphire [11-20]) for about 80-90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was ~24 μm(-2), and a lateral growth rate of ~82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation.
Applied Physics Letters | 2014
Arunima K. Singh; Richard G. Hennig
Density functional calculations determine the structure, stability, and electronic properties of two-dimensional materials in the family of group-IV monochalcogenides, MX (M = Ge, Sn, Pb; X = O, S, Se, Te). Calculations with a van der Waals functional show that the two-dimensional IV-VI compounds are most stable in either a highly distorted NaCl-type structure or a single-layer litharge type tetragonal structure. Their formation energies are comparable to single-layer MoS2, indicating the ease of mechanical exfoliation from their layered bulk structures. The phonon spectra confirm their dynamical stability. Using the hybrid HSE06 functional, we find that these materials are semiconductors with bandgaps that are generally larger than for their bulk counterparts due to quantum confinement. The band edge alignments of monolayer group IV-VI materials reveal several type-I and type-II heterostructures, suited for optoelectronics and solar energy conversion.
ACS Nano | 2015
Michael N. Blonsky; Houlong L. Zhuang; Arunima K. Singh; Richard G. Hennig
Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.
Applied Physics Letters | 2014
Arunima K. Singh; Richard G. Hennig
The synthesis of single-layer materials relies on suitable substrates. In this paper, we identify suitable substrates for the stabilization and growth of single-layer GaN and characterize the effect of the substrate on the electronic structure of single-layer GaN. We identify two classes of epitaxial substrates, refractory metal diborides and transition-metal dichalcogenides. We find that the refractory diborides provide epitaxial stabilization for the growth and functionalization of single layer GaN. We show that chemical interactions of single layer GaN with the diboride substrates result in n-type doping of the single-layer GaN. Transition-metal dichalcogenides, on the other hand, although epitaxially matched, cannot provide sufficient thermodynamic stabilization for the growth of single layer GaN. Nonetheless, energy band alignments of GaN/metal chalcogenides show that they make good candidates for heterostructures.
Applied Physics Letters | 2015
Arunima K. Singh; Richard G. Hennig; Albert V. Davydov; Francesca Tavazza
Sapphire (α-Al2O3) is a common substrate for the growth of single- to few-layer MoS2 films, and amorphous aluminium oxide serves as a high-κ dielectric gate oxide for MoS2 based transistors. Using density-functional theory calculations with a van der Waals functional, we investigate the structural, energetic, and electronic properties of n-layer MoS2 (n = 1and 3) on the α-Al2O3 (0001) surface. Our results show that the sapphire stabilizes single-layer and tri-layer MoS2, while having a negligible effect on the structure, band gap, and electron effective masses of MoS2. This combination of a strong energetic stabilization and weak perturbation of the electronic properties shows that α-Al2O3 can serve as an ideal substrate for depositing ultra-thin MoS2 layers and can also serve as a passivation or gate-oxide layer for MoS2 based devices.
Computational Materials Science | 2016
Kiran Mathew; Arunima K. Singh; Joshua J. Gabriel; Kamal Choudhary; Susan B. Sinnott; Albert V. Davydov; Francesca Tavazza; Richard G. Hennig
Abstract A Materials Project based open-source Python tool, MPInterfaces, has been developed to automate the high-throughput computational screening and study of interfacial systems. The framework encompasses creation and manipulation of interface structures for solid/solid hetero-structures, solid/implicit solvents systems, nanoparticle/ligands systems; and the creation of simple system-agnostic workflows for in depth computational analysis using density-functional theory or empirical energy models. The package leverages existing open-source high-throughput tools and extends their capabilities towards the understanding of interfacial systems. We describe the various algorithms and methods implemented in the package. Using several test cases, we demonstrate how the package enables high-throughput computational screening of advanced materials, directly contributing to the Materials Genome Initiative (MGI), which aims to accelerate the discovery, development, and deployment of new materials.
arXiv: Materials Science | 2017
Sean M. Oliver; Ryan Beams; Sergiy Krylyuk; Irina Kalish; Arunima K. Singh; Alina Bruma; Francesca Tavazza; Jaydeep Joshi; Iris Stone; Stephan J. Stranick; Albert V. Davydov; Patrick M. Vora
The structural polymorphism in transition metal dichalcogenides (TMDs) provides exciting opportunities for developing advanced electronics. For example, MoTe2 crystallizes in the 2H semiconducting phase at ambient temperature and pressure, but transitions into the 1T′ semimetallic phase at high temperatures. Alloying MoTe2 with WTe2 reduces the energy barrier between these two phases, while also allowing access to the Td Weyl semimetal phase. The Mo1−xWxTe2 alloy system is therefore promising for developing phase change memory technology. However, achieving this goal necessitates a detailed understanding of the phase composition in the MoTe2-WTe2 system. We combine polarization-resolved Raman spectroscopy with X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) to study Mo1−xWxTe2 alloys over the full compositional range x from 0 to 1. We identify Raman and XRD signatures characteristic of the 2H, 1T′, and Td structural phases that agree with density-functional theory (DFT) calculations, and use them to identify phase fields in the MoTe2-WTe2 system, including single-phase 2H, 1T ′, and Td regions, as well as a two-phase 1T ′ + Td region. Disorder arising from compositional fluctuations in Mo1−xWxTe2 alloys breaks inversion and translational symmetry, leading to the activation of an infrared 1T-MoTe2 mode and the enhancement of a double-resonance Raman process in 2H-Mo1−xWxTe2 alloys. Compositional fluctuations limit the phonon correlation length, which we estimate by fitting the observed asymmetric Raman lineshapes with a phonon confinement model. These observations reveal the important role of disorder in Mo1−xWxTe2 alloys, clarify the structural phase boundaries, and provide a foundation for future explorations of phase transitions and electronic phenomena in this system.
Nano Letters | 2014
Kaifu Bian; Arunima K. Singh; Richard G. Hennig; Zhongwu Wang; Tobias Hanrath
Ordered assemblies of inorganic nanocrystals coated with organic linkers present interesting scientific challenges in hard and soft matter physics. We demonstrate that a nanocrystal superlattice under compression serves as a nanoscopic pressure cell to enable studies of molecular linkers under uniaxial compression. We developed a method to uniaxially compress the bifunctional organic linker by attaching both ends of aliphatic chains to neighboring PbS nanocrystals in a superlattice. Pressurizing the nanocrystal superlattice in a diamond anvil cell thus results in compression of the molecular linkers along their chain direction. Small-angle and wide-angle X-ray scattering during the compression provide insights into the structure of the superlattice and nanocrystal cores under compression, respectively. We compare density functional theory calculations of the molecular linkers as basic Hookean springs to the experimental force–distance relationship. We determine the density of linkers on the nanocrystal surfaces. We demonstrate our method to probe the elastic force of single molecule as a function of chain length. The methodology introduced in this paper opens doors to investigate molecular interactions within organic molecules compressed within a nanocrystal superlattice.
Low-Dimensional Materials and Devices 2017 | 2017
Patrick M. Vora; Ryan Beams; Sergiy Krylyuk; Sean M. Oliver; Arunima K. Singh; Irina Kalish; Alina Bruma; Francesca Tavazza; Jaydeep Joshi; Iris Stone; Stephan J. Stranick; Albert V. Davydov; Nobuhiko P. Kobayashi; A. Alec Talin; M. Saif Islam
The structural polymorphism intrinsic to select transition metal dichalcogenides provides exciting opportunities for engineering novel devices. Of special interest are memory technologies that rely upon controlled changes in crystal phase, collectively known as phase change memories (PCMs). MoTe