Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arunpandian Balaji is active.

Publication


Featured researches published by Arunpandian Balaji.


Science and Technology of Advanced Materials | 2015

Tangible nanocomposites with diverse properties for heart valve application

Muthu Vignesh Vellayappan; Arunpandian Balaji; Aruna Priyadarshini Subramanian; Agnes Aruna John; Saravana Kumar Jaganathan; Selvakumar Murugesan; Hemanth Mohandas; Eko Supriyanto; Mustafa Yusof

Abstract Cardiovascular disease claims millions of lives every year throughout the world. Biomaterials are used widely for the treatment of this fatal disease. With the advent of nanotechnology, the use of nanocomposites has become almost inevitable in the field of biomaterials. The versatile properties of nanocomposites, such as improved durability and biocompatibility, make them an ideal choice for various biomedical applications. Among the various nanocomposites, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane, bacterial cellulose with polyvinyl alcohol, carbon nanotubes, graphene oxide and nano-hydroxyapatite nanocomposites have gained popularity as putative choices for biomaterials in cardiovascular applications owing to their superior properties. In this review, various studies performed utilizing these nanocomposites for improving the mechanical strength, anti-calcification potential and hemocompatibility of heart valves are reviewed and summarized. The primary motive of this work is to shed light on the emerging nanocomposites for heart valve applications. Furthermore, we aim to promote the prospects of these nanocomposites in the campaign against cardiovascular diseases.


RSC Advances | 2015

An insight on electrospun-nanofibers-inspired modern drug delivery system in the treatment of deadly cancers

Arunpandian Balaji; Muthu Vignesh Vellayappan; Agnes Aruna John; A. P. Subramanian; Saravana Kumar Jaganathan; Eko Supriyanto; S. I. A. Razak

In spite of ample researches and admirable achievements, there are still a significant number of deaths happening every year due to cancer. Furthermore, the number of new cases recorded is also not reduced despite the advent of various preventive measures. Though current clinical approaches yield commendable results, they elicit severe systemic side-effects and also fail to avoid the recurrence of the disease. To address these issues, nanotechnology-empowered modern drug delivery systems showcase excellent properties for the targeting and controlled delivery of biomolecules over a period of time. In the past decade, the materials-based cancer research field has witnessed the exploration of several attractive drug delivery approaches for the administration of synthetic drugs to genetic materials. Among those, the electrospinning-based nanofibrous mesh has attracted several works on treating common deadly cancers such as those of the lung, breast and colon. The capability of nanofibers to enable increased drug loading, maintenance of significant bioactivity, excellent drug encapsulation, controlled and targeted delivery, has helped the researchers to achieve successful administration of a variety of anti-cancer agents. This review gives an insight into the process of electrospinning, its essential parameters, the types of drug incorporation and the works reported on common deadly cancers. Moreover, the future direction of this effective alternative is also delineated, making electrospun nanofibers as a suitable vehicle for delivering drugs to the cancer sites.


International Journal of Nanomedicine | 2015

Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery

Agnes Aruna John; Aruna Priyadharshni Subramanian; Muthu Vignesh Vellayappan; Arunpandian Balaji; Hemanth Mohandas; Saravana Kumar Jaganathan

Neuroregeneration is the regrowth or repair of nervous tissues, cells, or cell products involved in neurodegeneration and inflammatory diseases of the nervous system like Alzheimer’s disease and Parkinson’s disease. Nowadays, application of nanotechnology is commonly used in developing nanomedicines to advance pharmacokinetics and drug delivery exclusively for central nervous system pathologies. In addition, nanomedical advances are leading to therapies that disrupt disarranged protein aggregation in the central nervous system, deliver functional neuroprotective growth factors, and change the oxidative stress and excitotoxicity of affected neural tissues to regenerate the damaged neurons. Carbon nanotubes and graphene are allotropes of carbon that have been exploited by researchers because of their excellent physical properties and their ability to interface with neurons and neuronal circuits. This review describes the role of carbon nanotubes and graphene in neuroregeneration. In the future, it is hoped that the benefits of nanotechnologies will outweigh their risks, and that the next decade will present huge scope for developing and delivering technologies in the field of neuroscience.


Journal of Materials Science | 2015

Review: Radiation-induced surface modification of polymers for biomaterial application

Saravana Kumar Jaganathan; Arunpandian Balaji; Muthu Vignesh Vellayappan; A. P. Subramanian; Agnes Aruna John; Manjeesh Kumar Umar Asokan; Eko Supriyanto

The field of biomaterials is one of the fast growing and continuously dominating in medical arena for the last five decades. Biomaterials utilize various kinds of materials ranging from metals, polymers, ceramics and biological substances as an alternative for replacing/assisting the functions of different parts of human system. Major issues associated with biomaterials are their properties and the biocompatibility which have to be addressed and resolved before promoting it to the market or clinical setting. In this scenario, polymers have emerged as a better candidate with versatile properties that make them ideal choice for biomedical applications. However, still the problem of biocompatibility limits the use of polymers in the human body. Several surface modification strategies are continuously evolving to improve the biocompatibility of polymers. This review initially outlines the polymers’ biomedical applications and also elicits the immune aspects of biocompatibility. Further, a thorough attempt is made to summarize the radiation-induced surface modification of the polymers. This review will help us to keep abreast of the recent advances in the radiation-induced surface modification and also in promoting radiation as a probable candidate to enhance the biocompatibility of polymers.


RSC Advances | 2015

Review: physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials

Agnes Aruna John; A. P. Subramanian; Muthu Vignesh Vellayappan; Arunpandian Balaji; Saravana Kumar Jaganathan; Hemanth Mohandas; T. Paramalinggam; Eko Supriyanto; Mustafa Yusof

A biomaterial can be defined as a material intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body. Major problems associated with biomaterials are their properties and biocompatibility, which need to be tackled and resolved before promoting a particular biomaterial to the market or implanting it into a biological system. To enhance the biocompatibility of the biomaterials, several surface modification strategies, such as physico-chemical, mechanical and biological modifications, have been explored. In this review, some recent applications of physico-chemical modification technologies, such as alteration in the structure of a molecule by chemical modification, surface grafting, abrasive blasting and acid etching, surface coatings, heat and steam treatment for medical materials such as polymers, metals, ceramics and nanocomposites are discussed. This article will promote physico-chemical modification as a versatile technology in surface engineering to improve the properties and biocompatibility of medical materials. Furthermore, it will instigate the growth of the biomaterial market with various high quality biomaterials.


International Journal of Nanomedicine | 2016

Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries

Arunpandian Balaji; Saravana Kumar Jaganathan; Ahmad Fauzi Ismail; R. Rajasekar

Management of burn injury is an onerous clinical task since it requires continuous monitoring and extensive usage of specialized facilities. Despite rapid improvizations and investments in burn management, >30% of victims hospitalized each year face severe morbidity and mortality. Excessive loss of body fluids, accumulation of exudate, and the development of septic shock are reported to be the main reasons for morbidity in burn victims. To assist burn wound management, a novel polyurethane (PU)-based bio-nanofibrous dressing loaded with honey (HN) and Carica papaya (PA) fruit extract was fabricated using a one-step electrospinning technique. The developed dressing material had a mean fiber diameter of 190±19.93 nm with pore sizes of 4–50 µm to support effective infiltration of nutrients and gas exchange. The successful blending of HN- and PA-based active biomolecules in PU was inferred through changes in surface chemistry. The blend subsequently increased the wettability (14%) and surface energy (24%) of the novel dressing. Ultimately, the presence of hydrophilic biomolecules and high porosity enhanced the water absorption ability of the PU-HN-PA nanofiber samples to 761.67% from 285.13% in PU. Furthermore, the ability of the bio-nanofibrous dressing to support specific protein adsorption (45%), delay thrombus formation, and reduce hemolysis demonstrated its nontoxic and compatible nature with the host tissues. In summary, the excellent physicochemical and hemocompatible properties of the developed PU-HN-PA dressing exhibit its potential in reducing the clinical complications associated with the treatment of burn injuries.


RSC Advances | 2015

Gallic acid: Prospects and molecular mechanisms of its anticancer activity

Aruna Priyadarshini Subramanian; Agnes Aruna John; Muthu Vignesh Vellayappan; Arunpandian Balaji; Saravana Kumar Jaganathan; Eko Supriyanto; Mustafa Yusof

Cancer is the second leading cause of death worldwide. There is always a huge demand for novel anticancer drugs and scientists explore various natural and artificial compounds to overcome this. Gallic acid (GA) is one of the phenolic acids found in many dietary substances and herbs used in ancient medicine. It possesses antiinflammatory, antioxidant, antiviral and antibacterial properties. The present review summarizes the anticancer activity of GA and its derivatives. Various in vitro and in vivo experiments of GA against a variety of cancer cell lines were reported. The previous studies show that the anticancer activity of GA is related to the induction of apoptosis through different mechanisms like generation of reactive oxygen species (ROS), regulation of apoptotic and anti-apoptotic proteins, suppression and promotion of oncogenes, inhibition of matrix metalloproteinases (MMPs) and cell cycle arrest depending upon the type of cancer investigated. Conclusively, GA and its derivatives may be considered as a potent drug for cancer treatment alone as well as in combination with other anticancer drugs to increase the efficiency of chemotherapy. However, there is still a need for more experimentation in knock-out animal models and human clinical trials to promote and place GA and its derivatives on the commercial market.


World Journal of Gastroenterology | 2014

Chemopreventive effect of apple and berry fruits against colon cancer

Saravana Kumar Jaganathan; Muthu Vignesh Vellayappan; Gayathri Narasimhan; Eko Supriyanto; Dyah Ekashanti Octorina Dewi; Aqilah Leela T. Narayanan; Arunpandian Balaji; Aruna Priyadarshini Subramanian; Mustafa Yusof

Colon cancer arises due to the conversion of precancerous polyps (benign) found in the inner lining of the colon. Prevention is better than cure, and this is very true with respect to colon cancer. Various epidemiologic studies have linked colorectal cancer with food intake. Apple and berry juices are widely consumed among various ethnicities because of their nutritious values. In this review article, chemopreventive effects of these fruit juices against colon cancer are discussed. Studies dealing with bioavailability, in vitro and in vivo effects of apple and berry juices are emphasized in this article. A thorough literature survey indicated that various phenolic phytochemicals present in these fruit juices have the innate potential to inhibit colon cancer cell lines. This review proposes the need for more preclinical evidence for the effects of fruit juices against different colon cancer cells, and also strives to facilitate clinical studies using these juices in humans in large trials. The conclusion of the review is that these apple and berry juices will be possible candidates in the campaign against colon cancer.


International Journal of Nanomedicine | 2015

Multifaceted prospects of nanocomposites for cardiovascular grafts and stents

Muthu Vignesh Vellayappan; Arunpandian Balaji; Aruna Priyadarshini Subramanian; Agnes Aruna John; Saravana Kumar Jaganathan; Selvakumar Murugesan; Eko Supriyanto; Mustafa Yusof

Cardiovascular disease is the leading cause of death across the globe. The use of synthetic materials is indispensable in the treatment of cardiovascular disease. Major drawbacks related to the use of biomaterials are their mechanical properties and biocompatibility, and these have to be circumvented before promoting the material to the market or clinical setting. Revolutionary advancements in nanotechnology have introduced a novel class of materials called nanocomposites which have superior properties for biomedical applications. Recently, there has been a widespread recognition of the nanocomposites utilizing polyhedral oligomeric silsesquioxane, bacterial cellulose, silk fibroin, iron oxide magnetic nanoparticles, and carbon nanotubes in cardiovascular grafts and stents. The unique characteristics of these nanocomposites have led to the development of a wide range of nanostructured copolymers with appreciably enhanced properties, such as improved mechanical, chemical, and physical characteristics suitable for cardiovascular implants. The incorporation of advanced nanocomposite materials in cardiovascular grafts and stents improves hemocompatibility, enhances antithrombogenicity, improves mechanical and surface properties, and decreases the microbial response to the cardiovascular implants. A thorough attempt is made to summarize the various applications of nanocomposites for cardiovascular graft and stent applications. This review will highlight the recent advances in nanocomposites and also address the need of future research in promoting nanocomposites as plausible candidates in a campaign against cardiovascular disease.


RSC Advances | 2015

Biomaterials based nano-applications of Aloe vera and its perspective: a review

Arunpandian Balaji; Muthu Vignesh Vellayappan; Agnes Aruna John; Aruna Priyadarshini Subramanian; Saravana Kumar Jaganathan; M. Selvakumar; Ahmad Athif Mohd Faudzi; Eko Supriyanto; Mustafa Yusof

Aloe vera is noted for its meritable medicinal as well as commercial usages. From the past until now, it has been used as a promising remedy for several ailments. Recently, the concept of nanotechnology has astonishingly changed its outlook for biomedical applications. Nanotechnology has revolutionized several fields with its admirable capabilities and ground-breaking innovations. In the field of medicine, nanostructured materials have introduced a great range of flexibility by refashioning traditional practices and also by exploring new effective approaches. Accordingly, the usage of Aloe vera in the form of hydrogels, nanoparticles, nanocomposites, nanofibers and bio-inspired sponges has extended its well established application spectrum in the fields of wound healing, tissue engineering and drug delivery. In addition, the growing interest in consuming and synthesizing materials based on green or eco-friendly methods also highly encourages the use of numerous plant-based natural products including Aloe vera. Hence, an effort has been made to discuss the works related to recent advancements made in the use of Aloe vera, especially in the form of biomaterial-based nanostructures. This will encourage scientists to explore the unplumbed abilities of Aloe vera. Moreover, it will also help the industry players to recognise its immense potential and bring significant Aloe products to the market.

Collaboration


Dive into the Arunpandian Balaji's collaboration.

Top Co-Authors

Avatar

Eko Supriyanto

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnes Aruna John

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Mustafa Yusof

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

A. P. Subramanian

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hemanth Mohandas

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Selvakumar

Indian Institute of Technology Kharagpur

View shared research outputs
Researchain Logo
Decentralizing Knowledge