Arvid Suls
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arvid Suls.
Brain | 2010
Carolien G.F. de Kovel; Holger Trucks; Ingo Helbig; Mefford Hc; Carl Baker; Costin Leu; Christian Kluck; Hiltrud Muhle; Sarah von Spiczak; Philipp Ostertag; Tanja Obermeier; Ailing A. Kleefuß-Lie; Kerstin Hallmann; Michael Steffens; Verena Gaus; Karl Martin Klein; Hajo M. Hamer; Felix Rosenow; Eva H. Brilstra; Dorothée Kasteleijn-Nolst Trenité; Marielle Swinkels; Yvonne G. Weber; Iris Unterberger; Fritz Zimprich; Lydia Urak; Martha Feucht; Karoline Fuchs; Rikke S. Møller; Helle Hjalgrim; Arvid Suls
Idiopathic generalized epilepsies account for 30% of all epilepsies. Despite a predominant genetic aetiology, the genetic factors predisposing to idiopathic generalized epilepsies remain elusive. Studies of structural genomic variations have revealed a significant excess of recurrent microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 in various neuropsychiatric disorders including autism, intellectual disability and schizophrenia. Microdeletions at 15q13.3 have recently been shown to constitute a strong genetic risk factor for common idiopathic generalized epilepsy syndromes, implicating that other recurrent microdeletions may also be involved in epileptogenesis. This study aimed to investigate the impact of five microdeletions at the genomic hotspot regions 1q21.1, 15q11.2, 16p11.2, 16p13.11 and 22q11.2 on the genetic risk to common idiopathic generalized epilepsy syndromes. The candidate microdeletions were assessed by high-density single nucleotide polymorphism arrays in 1234 patients with idiopathic generalized epilepsy from North-western Europe and 3022 controls from the German population. Microdeletions were validated by quantitative polymerase chain reaction and their breakpoints refined by array comparative genomic hybridization. In total, 22 patients with idiopathic generalized epilepsy (1.8%) carried one of the five novel microdeletions compared with nine controls (0.3%) (odds ratio = 6.1; 95% confidence interval 2.8-13.2; chi(2) = 26.7; 1 degree of freedom; P = 2.4 x 10(-7)). Microdeletions were observed at 1q21.1 [Idiopathic generalized epilepsy (IGE)/control: 1/1], 15q11.2 (IGE/control: 12/6), 16p11.2 IGE/control: 1/0, 16p13.11 (IGE/control: 6/2) and 22q11.2 (IGE/control: 2/0). Significant associations with IGEs were found for the microdeletions at 15q11.2 (odds ratio = 4.9; 95% confidence interval 1.8-13.2; P = 4.2 x 10(-4)) and 16p13.11 (odds ratio = 7.4; 95% confidence interval 1.3-74.7; P = 0.009). Including nine patients with idiopathic generalized epilepsy in this cohort with known 15q13.3 microdeletions (IGE/control: 9/0), parental transmission could be examined in 14 families. While 10 microdeletions were inherited (seven maternal and three paternal transmissions), four microdeletions occurred de novo at 15q13.3 (n = 1), 16p13.11 (n = 2) and 22q11.2 (n = 1). Eight of the transmitting parents were clinically unaffected, suggesting that the microdeletion itself is not sufficient to cause the epilepsy phenotype. Although the microdeletions investigated are individually rare (<1%) in patients with idiopathic generalized epilepsy, they collectively seem to account for a significant fraction of the genetic variance in common idiopathic generalized epilepsy syndromes. The present results indicate an involvement of microdeletions at 15q11.2 and 16p13.11 in epileptogenesis and strengthen the evidence that recurrent microdeletions at 15q11.2, 15q13.3 and 16p13.11 confer a pleiotropic susceptibility effect to a broad range of neuropsychiatric disorders.
Brain | 2008
Arvid Suls; Peter Dedeken; Karolien Goffin; Hilde Van Esch; Patrick Dupont; David Cassiman; Judith S. Kempfle; Thomas V. Wuttke; Yvonne G. Weber; Holger Lerche; Zaid Afawi; Wim Vandenberghe; Amos D. Korczyn; Samuel F. Berkovic; Dana Ekstein; Sara Kivity; Philippe Ryvlin; Lieve Claes; Liesbet Deprez; Snezana Maljevic; Alberto Vargas; Tine Van Dyck; Dirk Goossens; Jurgen Del-Favero; Koen Van Laere; Wim Van Paesschen
Paroxysmal exercise-induced dyskinesia (PED) can occur in isolation or in association with epilepsy, but the genetic causes and pathophysiological mechanisms are still poorly understood. We performed a clinical evaluation and genetic analysis in a five-generation family with co-occurrence of PED and epilepsy (n = 39), suggesting that this combination represents a clinical entity. Based on a whole genome linkage analysis we screened SLC2A1, encoding the glucose transporter of the blood-brain-barrier, GLUT1 and identified heterozygous missense and frameshift mutations segregating in this and three other nuclear families with a similar phenotype. PED was characterized by choreoathetosis, dystonia or both, affecting mainly the legs. Predominant epileptic seizure types were primary generalized. A median CSF/blood glucose ratio of 0.52 (normal >0.60) in the patients and a reduced glucose uptake by mutated transporters compared with the wild-type as determined in Xenopus oocytes confirmed a pathogenic role of these mutations. Functional imaging studies implicated alterations in glucose metabolism in the corticostriate pathways in the pathophysiology of PED and in the frontal lobe cortex in the pathophysiology of epileptic seizures. Three patients were successfully treated with a ketogenic diet. In conclusion, co-occurring PED and epilepsy can be due to autosomal dominant heterozygous SLC2A1 mutations, expanding the phenotypic spectrum associated with GLUT1 deficiency and providing a potential new treatment option for this clinical syndrome.
Annals of Neurology | 2012
Sarah Weckhuysen; Simone Mandelstam; Arvid Suls; Dominique Audenaert; Tine Deconinck; Lieve Claes; Liesbet Deprez; Katrien Smets; Dimitrina Hristova; Iglika Yordanova; Albena Jordanova; Berten Ceulemans; A. Jansen; Danièle Hasaerts; Filip Roelens; Lieven Lagae; Simone C. Yendle; Thorsten Stanley; Sarah E. Heron; John C. Mulley; Samuel F. Berkovic; Ingrid E. Scheffer
KCNQ2 and KCNQ3 mutations are known to be responsible for benign familial neonatal seizures (BFNS). A few reports on patients with a KCNQ2 mutation with a more severe outcome exist, but a definite relationship has not been established. In this study we investigated whether KCNQ2/3 mutations are a frequent cause of epileptic encephalopathies with an early onset and whether a recognizable phenotype exists.
Annals of Neurology | 2009
Arvid Suls; Saul A. Mullen; Yvonne G. Weber; Kristien Verhaert; Berten Ceulemans; Renzo Guerrini; Thomas V. Wuttke; Alberto Salvo‐Vargas; Liesbet Deprez; Lieve Claes; Albena Jordanova; Samuel F. Berkovic; Holger Lerche; Ingrid E. Scheffer
Absence epilepsies of childhood are heterogeneous with most cases following complex inheritance. Those cases with onset before 4 years of age represent a poorly studied subset. We screened 34 patients with early‐onset absence epilepsy for mutations in SLC2A1, the gene encoding the GLUT1 glucose transporter. Mutations leading to reduced protein function were found in 12% (4/34) of patients. Two mutations arose de novo, and two were familial. These findings suggest GLUT1 deficiency underlies a significant proportion of early‐onset absence epilepsy, which has both genetic counseling and treatment implications because the ketogenic diet is effective in GLUT1 deficiency. Ann Neurol 2009;66:415–419
Epilepsia | 2011
Carla Marini; Ingrid E. Scheffer; Rima Nabbout; Arvid Suls; Federico Zara; Renzo Guerrini
Dravet syndrome (DS), otherwise known as severe myoclonic epilepsy of infancy (SMEI), is an epileptic encephalopathy presenting in the first year of life. DS has a genetic etiology: between 70% and 80% of patients carry sodium channel α1 subunit gene (SCN1A) abnormalities, and truncating mutations account for about 40% and have a significant correlation with an earlier age of seizures onset. The remaining SCN1A mutations comprise splice‐site and missense mutations, most of which fall into the pore‐forming region of the sodium channel. Mutations are randomly distributed across the SCN1A protein. Most mutations are de novo, but familial SCN1A mutations also occur. Somatic mosaic mutations have also been reported in some patients and might explain the phenotypical variability seen in some familial cases. SCN1A exons deletions or chromosomal rearrangements involving SCN1A and contiguous genes are also detectable in about 2–3% of patients. A small percentage of female patients with a DS‐like phenotype might carry PCDH19 mutations. Rare mutations have been identified in the GABARG2 and SCN1B genes. The etiology of about 20% of DS patients remains unknown, and additional genes are likely to be implicated.
Neurology | 2010
Saul A. Mullen; Arvid Suls; P. De Jonghe; Samuel F. Berkovic; Ingrid E. Scheffer
Background: Familial glucose transporter type 1 (GLUT1) deficiency due to autosomal dominant inheritance of SLC2A1 mutations is associated with paroxysmal exertional dyskinesia; epilepsy and intellectual disability occur in some family members. We recently demonstrated that GLUT1 deficiency occurs in over 10% of patients with early-onset absence epilepsy. Methods: This family study analyses the phenotypes in 2 kindreds segregating SLC2A1 mutations identified through probands with early-onset absence epilepsy. One comprised 9 individuals with mutations over 3 generations; the other had 6 individuals over 2 generations. Results: Of 15 subjects with SLC2A1 mutations, epilepsy occurred in 12. Absence seizures were the most prevalent seizure type (10/12), with onset from 3 to 34 years of age. Epilepsy phenotypes varied widely, including idiopathic generalized epilepsies (IGE) with absence (8/12), myoclonic-astatic epilepsy (2/12), and focal epilepsy (2/12). Paroxysmal exertional dyskinesia occurred in 7, and was subtle and universally undiagnosed prior to molecular diagnosis. There were 2 unaffected mutation carriers. Conclusions: GLUT1 deficiency is an important monogenic cause of absence epilepsies with onset from early childhood to adult life. Individual cases may be phenotypically indistinguishable from common forms of IGE. Although subtle paroxysmal exertional dyskinesia is a helpful diagnostic clue, it is far from universal. The phenotypic spectrum of GLUT1 deficiency is considerably greater than previously recognized. Diagnosis of GLUT1 deficiency has important treatment and genetic counseling implications.
Neurology | 2014
Gemma L. Carvill; Sarah Weckhuysen; Jacinta M. McMahon; Corinna Hartmann; Rikke S. Møller; Helle Hjalgrim; Joseph Cook; Eileen Geraghty; Brian J. O'Roak; Steven Petrou; Alison L. Clarke; Deepak Gill; Lynette G. Sadleir; Hiltrud Muhle; Sarah von Spiczak; Marina Nikanorova; Bree L. Hodgson; Elena V. Gazina; Arvid Suls; Jay Shendure; Leanne M. Dibbens; Ingo Helbig; Samuel F. Berkovic; Ingrid E. Scheffer; Mefford Hc
Objective: To determine the genes underlying Dravet syndrome in patients who do not have an SCN1A mutation on routine testing. Methods: We performed whole-exome sequencing in 13 SCN1A-negative patients with Dravet syndrome and targeted resequencing in 67 additional patients to identify new genes for this disorder. Results: We detected disease-causing mutations in 2 novel genes for Dravet syndrome, with mutations in GABRA1 in 4 cases and STXBP1 in 3. Furthermore, we identified 3 patients with previously undetected SCN1A mutations, suggesting that SCN1A mutations occur in even more than the currently accepted ∼75% of cases. Conclusions: We show that GABRA1 and STXBP1 make a significant contribution to Dravet syndrome after SCN1A abnormalities have been excluded. Our results have important implications for diagnostic testing, clinical management, and genetic counseling of patients with this devastating disorder and their families.
Neurology | 2006
D Audenaert; E Schwartz; Kristl G. Claeys; Lieve Claes; Liesbet Deprez; Arvid Suls; T Van Dyck; Lieven Lagae; C. Van Broeckhoven; Robert L. Macdonald; P. De Jonghe
Mutations in the gene encoding the γ2 subunit of the γ-aminobutyric acid type A receptor (GABRG2) have been reported to cause childhood absence epilepsy (CAE), febrile seizures (FS), and generalized epilepsy with FS plus (GEFS+). The authors analyzed GABRG2 in 47 unrelated patients with CAE, FS, and GEFS+ and identified a novel mutation that cosegregated with FS. Electrophysiologic studies demonstrated altered current desensitization and reduced benzodiazepine enhancement in mutant receptors.
Neurology | 2010
Liesbet Deprez; Sarah Weckhuysen; Philip Holmgren; Arvid Suls; T Van Dyck; Dirk Goossens; Jurgen Del-Favero; A. Jansen; Kristien Verhaert; Lieven Lagae; Albena Jordanova; R. Van Coster; Simone C. Yendle; Samuel F. Berkovic; Ingrid E. Scheffer; Berten Ceulemans; P. De Jonghe
Objectives: Heterozygous mutations in STXBP1, encoding the syntaxin binding protein 1, have recently been identified in Ohtahara syndrome, an epileptic encephalopathy with very early onset. In order to explore the phenotypic spectrum associated with STXBP1 mutations, we analyzed a cohort of patients with unexplained early-onset epileptic encephalopathies. Methods: We collected and clinically characterized 106 patients with early-onset epileptic encephalopathies. Mutation analysis of the STXBP1 gene was done using sequence analysis of the exon and intron–exon boundaries and multiplex amplification quantification to detect copy number variations. Results: We identified 4 truncating mutations and 2 microdeletions partially affecting STXBP1 in 6 of the 106 patients. All mutations are predicted to abolish STXBP1 function and 5 mutations were proven to occur de novo. None of the mutation-carrying patients had Ohtahara syndrome. One patient was diagnosed with West syndrome at disease onset, while the initial phenotype of 5 further patients did not fit into a specific recognized epilepsy syndrome. Three of these patients later evolved to West syndrome. All patients had severe to profound mental retardation, and ataxia or dyskinetic movements were present in 5 patients. Conclusion: This study shows that mutations in STXBP1 are not limited to patients with Ohtahara syndrome, but are also present in 10% (5/49) of patients with an early-onset epileptic encephalopathy that does not fit into either Ohtahara or West syndrome and rarely in typical West syndrome. STXBP1 mutational analysis should be considered in the diagnostic evaluation of this challenging group of patients.
Annals of Neurology | 2014
Johannes R. Lemke; Rik Hendrickx; Kirsten Geider; Bodo Laube; Michael Schwake; Robert J. Harvey; Victoria M. James; Alex Pepler; Isabelle Steiner; Konstanze Hörtnagel; John Neidhardt; Susanne Ruf; Markus Wolff; Deborah Bartholdi; Roberto Horacio Caraballo; Konrad Platzer; Arvid Suls; Saskia Biskup; Sarah Weckhuysen
To identify novel epilepsy genes using a panel approach and describe the functional consequences of mutations.