Arvind Ayyer
Indian Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arvind Ayyer.
Advances in Applied Mathematics | 2014
Arvind Ayyer; Svante Linusson
We reinterpret and generalize conjectures of Lam and Williams as statements about the stationary distribution of a multispecies exclusion process on the ring. The central objects in our study are the multiline queues of Ferrari and Martin. We make some progress on some of the conjectures in different directions. First, we prove their conjectures in two special cases by generalizing the rates of the Ferrari-Martin transitions. Secondly, we define a new process on multiline queues, which have a certain minimality property. This gives another proof for one of the special cases; namely arbitrary jump rates for three species.
Journal of Physics A | 2012
Chikashi Arita; Arvind Ayyer; Kirone Mallick; Sylvain Prolhac
We investigate one of the simplest multispecies generalizations of the asymmetric simple exclusion process on a ring. This process has a rich combinatorial spectral structure and a matrix product form for the stationary state. In the totally asymmetric case, operators that conjugate the dynamics of systems with different numbers of species were obtained by the authors and recently reported by Arita et al (2011 J. Phys. A: Math. Theor. 44 335004). The existence of such nontrivial operators was reformulated as a representation problem for a specific quadratic algebra (generalized matrix Ansatz). In this work, we construct the family of representations explicitly for the partially asymmetric case. This solution cannot be obtained by a simple deformation of the totally asymmetric case.
Communications in Mathematical Physics | 2015
Arvind Ayyer; Anne Schilling; Benjamin Steinberg; Nicolas M. Thiéry
We define two general classes of nonabelian sandpile models on directed trees (or arborescences), as models of nonequilibrium statistical physics. Unlike usual applications of the well-known abelian sandpile model, these models have the property that sand grains can enter only through specified reservoirs.In the Trickle-down sandpile model, sand grains are allowed to move one at a time. For this model, we show that the stationary distribution is of product form. In the Landslide sandpile model, all the grains at a vertex topple at once, and here we prove formulas for all eigenvalues, their multiplicities, and the rate of convergence to stationarity. The proofs use wreath products and the representation theory of monoids.
Advances in Mathematics | 2013
Arvind Ayyer; Dan Romik
Abstract The refined enumeration of alternating sign matrices (ASMs) of given order having prescribed behavior near one or more of their boundary edges has been the subject of extensive study, starting with the Refined Alternating Sign Matrix Conjecture of Mills–Robbins–Rumsey (1983) [25] , its proof by Zeilberger (1996) [31] , and more recent work on doubly-refined and triply-refined enumerations by several authors. In this paper we extend the previously known results on this problem by deriving explicit enumeration formulas for the “top–left–bottom” (triply-refined) and “top–left–bottom–right” (quadruply-refined) enumerations. The latter case solves the problem of computing the full boundary correlation function for ASMs. The enumeration formulas are proved by deriving new representations, which are of independent interest, for the partition function of the square ice model with domain wall boundary conditions at the “combinatorial point” η = 2 π / 3 .
Journal of Physics A | 2010
Arvind Ayyer; Kirone Mallick
We consider a nonequilibrium reaction–diffusion model on a finite one-dimensional lattice with bulk and boundary dynamics inspired by the Glauber dynamics of the Ising model. We show that the model has a rich algebraic structure that we use to calculate its properties. In particular, we show that the Markov dynamics for a system of a given size can be embedded into the dynamics of systems of higher sizes. This remark leads us to devise a technique which we call the transfer matrix Ansatz that allows us to determine the steady-state distribution and correlation functions. Furthermore, we show that the disorder variables satisfy very simple properties and we give a conjecture for the characteristic polynomial of Markov matrices. Finally, we compare the transfer matrix Ansatz used here with the matrix product representation of the steady state of one-dimensional stochastic models.
arXiv: Probability | 2014
Arvind Ayyer; Steven Klee; Anne Schilling
We consider generalizations of Schutzenberger’s promotion operator on the set \(\mathcal{L}\) of linear extensions of a finite poset. This gives rise to a strongly connected graph on \(\mathcal{L}\). In earlier work (Ayyer et al., J. Algebraic Combinatorics 39(4), 853–881 (2014)), we studied promotion-based Markov chains on these linear extensions which generalizes results on the Tsetlin library. We used the theory of \(\mathcal{R}\)-trivial monoids in an essential way to obtain explicitly the eigenvalues of the transition matrix in general when the poset is a rooted forest. We first survey these results and then present explicit bounds on the mixing time and conjecture eigenvalue formulas for more general posets. We also present a generalization of promotion to arbitrary subsets of the symmetric group.
Transactions of the American Mathematical Society | 2016
Arvind Ayyer; Svante Linusson
We study correlations in the multispecies TASEP on a ring. Results on the correlation of two adjacent points prove two conjectures by Thomas Lam on (a) the limiting direction of a reduced random walk in (A) over tilde (n-1) and (b) the asymptotic shape of a random integer partition with no hooks of length n, a so called n-core. We further investigate two-point correlations far apart and three-point nearest neighbour correlations and prove explicit formulas in almost all cases. These results can be seen as a finite strengthening of correlations in the TASEP speed process by Amir, Angel and Valko. We also give conjectures for certain higher order nearest neighbour correlations. We find an unexplained independence property (provably for two points, conjecturally for more points) between points that are closer in position than in value that deserves more study.
Electronic Journal of Probability | 2015
Arvind Ayyer; Jérémie Bouttier; Sylvie Corteel; François Nunzi
We consider refined versions of Markov chains related to juggling introduced by Warrington. We further generalize the construction to juggling with arbitrary heights as well as infinitely many balls, which are expressed more succinctly in terms of Markov chains on integer partitions. In all cases, we give explicit product formulas for the stationary probabilities. The normalization factor in one case can be explicitly written as a homogeneous symmetric polynomial. We also refine and generalize enriched Markov chains on set partitions. Lastly, we prove that in one case, the stationary distribution is attained in bounded time.
European Journal of Combinatorics | 2010
Arvind Ayyer
We construct a direct natural bijection between descending plane partitions without any special part and permutations. The directness is in the sense that the bijection avoids any reference to nonintersecting lattice paths. The advantage of the bijection is that it provides an interpretation for the seemingly long list of conditions needed to define descending plane partitions. Unfortunately, the bijection does not relate the number of parts of the descending plane partition with the number of inversions of the permutation as one might have expected from the conjecture of Mills, Robbins and Rumsey, although there is a simple expression for the number of inversions of a permutation in terms of the corresponding descending plane partition.
Mathematical Physics Analysis and Geometry | 2015
Arvind Ayyer
We formulate a natural model of loops and isolated vertices for arbitrary planar graphs, which we call the monopole-dimer model. We show that the partition function of this model can be expressed as a determinant. We then extend the method of Kasteleyn and Temperley-Fisher to calculate the partition function exactly in the case of rectangular grids. This partition function turns out to be a square of a polynomial with positive integer coefficients when the grid lengths are even. Finally, we analyse this formula in the infinite volume limit and show that the local monopole density, free energy and entropy can be expressed in terms of well-known elliptic functions. Our technique is a novel determinantal formula for the partition function of a model of isolated vertices and loops for arbitrary graphs.