Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arvind Rao is active.

Publication


Featured researches published by Arvind Rao.


PLOS Genetics | 2011

Temporal Dynamics of Host Molecular Responses Differentiate Symptomatic and Asymptomatic Influenza A Infection

Yongsheng Huang; Aimee K. Zaas; Arvind Rao; Nicolas Dobigeon; Peter J. Woolf; Timothy Veldman; N. Christine Øien; Micah T. McClain; Jay B. Varkey; Bradley Nicholson; Lawrence Carin; Stephen F. Kingsmore; Christopher W. Woods; Geoffrey S. Ginsburg; Alfred O. Hero

Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza.


Development | 2006

Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation

Takashi Moriguchi; Nakano Takako; Michito Hamada; Atsuko Maeda; Yuki Fujioka; Takashi Kuroha; Reuben E. Huber; Susan L. Hasegawa; Arvind Rao; Masayuki Yamamoto; Satoru Takahashi; Kim Chew Lim; James Douglas Engel

Gata3 mutant mice expire of noradrenergic deficiency by embryonic day (E) 11 and can be rescued pharmacologically or, as shown here, by restoring Gata3 function specifically in sympathoadrenal (SA) lineages using the human DBH promoter to direct Gata3 transgenic expression. In Gata3-null embryos, there was significant impairment of SA differentiation and increased apoptosis in adrenal chromaffin cells and sympathetic neurons. Additionally, mRNA analyses of purified chromaffin cells from Gata3 mutants show that levels of Mash1, Hand2 and Phox2b (postulated upstream regulators of Gata3) as well as terminally differentiated SA lineage products (tyrosine hydroxylase, Th, and dopamineβ -hydroxylase, Dbh) are markedly altered. However, SA lineage-specific restoration of Gata3 function in the Gata3 mutant background rescues the expression phenotypes of the downstream, as well as the putative upstream genes. These data not only underscore the hypothesis that Gata3 is essential for the differentiation and survival of SA cells, but also suggest that their differentiation is controlled by mutually reinforcing feedback transcriptional interactions between Gata3, Mash1, Hand2 and Phox2b in the SA lineage.


Journal of Bioinformatics and Computational Biology | 2008

Using directed information to build biologically relevant influence networks

Arvind Rao; Alfred O. Hero; David J. States; James Douglas Engel

The systematic inference of biologically relevant influence networks remains a challenging problem in computational biology. Even though the availability of high-throughput data has enabled the use of probabilistic models to infer the plausible structure of such networks, their true interpretation of the biology of the process is questionable. In this work, we propose a network inference methodology, based on the directed information (DTI) criterion, that incorporates the biology of transcription within the framework so as to enable experimentally verifiable inference. We use publicly available embryonic kidney and T-cell microarray datasets to demonstrate our results. We present two variants of network inference via DTI--supervised and unsupervised--and the inferred networks relevant to mammalian nephrogenesis and T-cell activation. Conformity of the obtained interactions with the literature as well as comparison with the coefficient of determination (CoD) method are demonstrated. Apart from network inference, the proposed framework enables the exploration of specific interactions, not just those revealed by data. To illustrate the latter point, a DTI-based framework to resolve interactions between transcription factor modules and target coregulated genes is proposed. Additionally, we show that DTI can be used in conjunction with mutual information to infer higher-order influence networks involving cooperative gene interactions.


international conference on acoustics, speech, and signal processing | 2006

Inference of Biologically Relevant Gene Influence Networks Using the Directed Information Criterion

Arvind Rao; Alfred O. Hero; David J. States; James Douglas Engel

The systematic inference of biologically relevant influence networks remains a challenging problem in computational biology. Even though the availability of high-throughput data has enabled us to use probabilistic models to infer the plausible structure of such networks, their true interpretation of the biology of the process is questionable. In this work, we propose a probabilistic network inference methodology, based on the directed information criterion, which incorporates the biology of transcription within the framework, so as to enable experimentally verifiable inference. We use a publicly available embryonic kidney microarray dataset to demonstrate our results on the regulation of the Gata2/Gata3 genes


Eurasip Journal on Bioinformatics and Systems Biology | 2007

Inferring time-varying network topologies from gene expression data

Arvind Rao; Alfred O. Hero; David J. States; James Douglas Engel

Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in order to account for different cellular states affecting the interactions amongst genes. In this work, we present an approach, regime-SSM, to understand gene regulatory networks within such a dynamic setting. The approach uses a clustering method based on these underlying dynamics, followed by system identification using a state-space model for each learnt cluster—to infer a network adjacency matrix. We finally indicate our results on the mouse embryonic kidney dataset as well as the T-cell activation-based expression dataset and demonstrate conformity with reported experimental evidence.


Molecular and Cellular Biology | 2011

An NK and T cell enhancer lies 280 kilobase pairs 3' to the Gata3 structural gene

Sakie Hosoya-Ohmura; Yu Hsuan Lin; Mary Herrmann; Takashi Kuroha; Arvind Rao; Takashi Moriguchi; Kim Chew Lim; Tomonori Hosoya; James Douglas Engel

ABSTRACT Transcription factor GATA-3 is vital for multiple stages of T cell and natural killer (NK) cell development, and yet the factors that directly regulate Gata3 transcription during hematopoiesis are only marginally defined. Here, we show that neither of the Gata3 promoters, previously implicated in its tissue-specific regulation, is alone capable of directing Gata3 transcription in T lymphocytes. In contrast, by surveying large swaths of DNA surrounding the Gata3 locus, we located a cis element that can recapitulate aspects of the Gata3-dependent T cell regulatory program in vivo. This element, located 280 kbp 3′ to the structural gene, directs both T cell- and NK cell-specific transcription in vivo but harbors no other tissue activity. This novel, distant element regulates multiple major developmental stages that require GATA-3 activity.


international symposium on biomedical imaging | 2009

Automated analysis of Human Protein Atlas immunofluorescence images

Justin Y. Newberg; Jieyue Li; Arvind Rao; Fredrik Pontén; Mathias Uhlén; Emma Lundberg; Robert F. Murphy

The Human Protein Atlas is a rich source of location proteomics data. In this work, we present an automated approach for processing and classifying major subcellular patterns in the Atlas images. We demonstrate that two different classification frameworks (support vector machine and random forest) are effective at determining subcellular locations; we can analyze over 3500 Atlas images with a high degree of accuracy, up to 87.5% for all of the samples and 98.5% when only considering samples in whose classification assignments we are most confident. Moreover, the features obtained in both of these frameworks are observed to be highly consistent and generalizable. Additionally, we observe that the features relating the proteins to cell markers are especially important in automated learning approaches.


Eurasip Journal on Bioinformatics and Systems Biology | 2007

Motif discovery in tissue-specific regulatory sequences using directed information

Arvind Rao; Alfred O. Hero; David J. States; James Douglas Engel

Motif discovery for the identification of functional regulatory elements underlying gene expression is a challenging problem. Sequence inspection often leads to discovery of novel motifs (including transcription factor sites) with previously uncharacterized function in gene expression. Coupled with the complexity underlying tissue-specific gene expression, there are several motifs that are putatively responsible for expression in a certain cell type. This has important implications in understanding fundamental biological processes such as development and disease progression. In this work, we present an approach to the identification of motifs (not necessarily transcription factor sites) and examine its application to some questions in current bioinformatics research. These motifs are seen to discriminate tissue-specific gene promoter or regulatory regions from those that are not tissue-specific. There are two main contributions of this work. Firstly, we propose the use of directed information for such classification constrained motif discovery, and then use the selected features with a support vector machine (SVM) classifier to find the tissue specificity of any sequence of interest. Such analysis yields several novel interesting motifs that merit further experimental characterization. Furthermore, this approach leads to a principled framework for the prospective examination of any chosen motif to be discriminatory motif for a group of coexpressed/coregulated genes, thereby integrating sequence and expression perspectives. We hypothesize that the discovery of these motifs would enable the large-scale investigation for the tissue-specific regulatory role of any conserved sequence element identified from genome-wide studies.


BMC Genomics | 2015

Reconstruction of composite regulator-target splicing networks from high-throughput transcriptome data

Panagiotis Papasaikas; Arvind Rao; Peter Huggins; Juan Valcárcel; A. Javier Lopez

We present a computational framework tailored for the modeling of the complex, dynamic relationships that are encountered in splicing regulation. The starting point is whole-genome transcriptomic data from high-throughput array or sequencing methods that are used to quantify gene expression and alternative splicing across multiple contexts. This information is used as input for state of the art methods for Graphical Model Selection in order to recover the structure of a composite network that simultaneously models exon co-regulation and their cognate regulators. Community structure detection and social network analysis methods are used to identify distinct modules and key actors within the network. As a proof of concept for our framework we studied the splicing regulatory network for Drosophila development using the publicly available modENCODE data. The final model offers a comprehensive view of the splicing circuitry that underlies fly development. Identified modules are associated with major developmental hallmarks including maternally loaded RNAs, onset of zygotic gene expression, transitions between life stages and sex differentiation. Within-module key actors include well-known developmental-specific splicing regulators from the literature while additional factors previously unassociated with developmental-specific splicing are also highlighted. Finally we analyze an extensive battery of Splicing Factor knock-down transcriptome data and demonstrate that our approach captures true regulatory relationships.


international conference of the ieee engineering in medicine and biology society | 2009

Cell cycle dependence of protein subcellular location inferred from static, asynchronous images

Taráz E. Buck; Arvind Rao; Luis Pedro Coelho; Margaret H. Fuhrman; Jonathan W. Jarvik; Peter B. Berget; Robert F. Murphy

Protein subcellular location is one of the most important determinants of protein function during cellular processes. Changes in protein behavior during the cell cycle are expected to be involved in cellular reprogramming during disease and development, and there is therefore a critical need to understand cell-cycle dependent variation in protein localization which may be related to aberrant pathway activity. With this goal, it would be useful to have an automated method that can be applied on a proteomic scale to identify candidate proteins showing cell-cycle dependent variation of location. Fluorescence microscopy, and especially automated, high-throughput microscopy, can provide images for tens of thousands of fluorescently-tagged proteins for this purpose. Previous work on analysis of cell cycle variation has traditionally relied on obtaining time-series images over an entire cell cycle; these methods are not applicable to the single time point images that are much easier to obtain on a large scale. Hence a method that can infer cell cycle-dependence of proteins from asynchronous, static cell images would be preferable. In this work, we demonstrate such a method that can associate protein pattern variation in static images with cell cycle progression. We additionally show that a one-dimensional parameterization of cell cycle progression and protein feature pattern is sufficient to infer association between localization and cell cycle.

Collaboration


Dive into the Arvind Rao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert F. Murphy

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry S. Rosenstein

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge