Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arvind Thakkar is active.

Publication


Featured researches published by Arvind Thakkar.


International Journal of Oncology | 2012

Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen

Dhruvitkumar Sutaria; Balagangadhar Karthik Grandhi; Arvind Thakkar; Jeffrey Wang; Sunil Prabhu

Pancreatic cancer is the fourth largest cause of cancer deaths in the Unites States and the prognosis is grim with <5% survival chances upon diagnosis. The objective of this study was to assess the combined chemopreventive effect of solid lipid nanoparticle (SLN) encapsulated drugs aspirin (ASP), curcumin (CUR) and free sulforaphane (SFN) for the chemoprevention of pancreatic cancer. Experiments were carried out (1) to evaluate the feasibility of encapsulation of these chemopreventive agents within solid lipid systems and (2) to measure the synergistic effects of a combination of ASP with CUR in SLNs mixed with free SFN against cell proliferation and apoptosis in pancreatic cancer cells, MIA PaCa-2 and Panc-1. The SLNs were prepared using a modified solvent evaporation technique and were characterized for particle sizing, encapsulation efficiency and drug release. ASP and CUR SLNs were formulated within the particle size range of 150–250 nm and were found to have an encapsulation efficiency of 85 and 69%, respectively. Sustained release of drugs over a 96 h period from SLNs was observed. The SLNs were stable over a 3-month storage period at room temperature. Cell viability studies demonstrated that combinations of low doses of ASP SLN (25 μM), CUR SLN (2.5 μM) and free SFN (5 μM) significantly reduced cell viability by 43.6 and 48.49% in MIAPaca-2 and Panc-1 cell lines, respectively. Furthermore, increased apoptosis of 61.3 and 60.37% was found in MIA Paca-2 and Panc-1 cell lines, respectively, in comparison to the individual doses administered. Synergistic effects were demonstrated using MTS and apoptosis assays. Thus, this study successfully demonstrated the feasibility of using a solid lipid nanoparticulate system for the first time to deliver this novel combination chemoprevention regimen, providing valuable evidence for the usability of nanotechnology-based drug regimens towards pancreatic cancer chemoprevention.


Oncology Reports | 2013

The molecular mechanism of action of aspirin, curcumin and sulforaphane combinations in the chemoprevention of pancreatic cancer

Arvind Thakkar; Dhruvitkumar Sutaria; B. Karthik Grandhi; Jeffrey Wang; Sunil Prabhu

Pancreatic cancer ranks as the fourth most deadly form of cancer in the United States with ~37,000 deaths each year. The present study evaluated the chemopreventive potential of a combination of aspirin (ASP), curcumin (CUR) and sulforaphane (SFN) in low doses to human pancreatic cancer cells, MIA PaCa-2 and Panc-1. Results demonstrated that low doses of ASP (1 mM), CUR (10 μM) and SFN (5 μM) (ACS) combination reduced cell viability by ~70% (P<0.001), and also induced cell apoptosis by ~51% (P<0.001) accompanied by activation of caspase-3 and Poly(ADP-ribose) polymerase (PARP) proteins. The NF-κB DNA binding activity was inhibited by ~45% (P<0.01) and ~75% (P<0.001) in MIA PaCa-2 and Panc-1 cells, respectively. Mechanistic studies revealed that ACS promoted increase expression of phospho extracellular signal-regulated kinase 1/2 (P-ERK1/2), c-Jun, p38 MAPK and p53 proteins. Furthermore, the cells pretreated with U0126 (ERK1/2 inhibitor) partially abolished the effect of ACS on cell viability. Data from this study demonstrate that a low-dose ACS combination inhibits cell growth by inducing cell apoptosis, and proposes sustained activation of the ERK1/2 signaling pathway as one of the possible mechanisms.


Cancer Prevention Research | 2013

A Novel Combinatorial Nanotechnology-based Oral Chemopreventive Regimen Demonstrates Significant Suppression of Pancreatic Cancer Neoplastic Lesions

Grandhi Bk; Arvind Thakkar; Jeffrey Wang; Sunil Prabhu

Pancreatic cancer is a deadly disease killing 37,000 Americans each year. Despite two decades of research on treatment options, the chances of survival are still less than 5% upon diagnosis. Recently, chemopreventive strategies have gained considerable attention as an alternative to treatment. We have previously shown significant in vitro chemopreventive effects with low-dose combinations of aspirin, curcumin, and sulforaphane (ACS) on pancreatic cancer cell lines. Here, we report the results of 24-week chemopreventive study with the oral administration of ACS combinations on the N-nitrosobis (2-oxopropyl) amine (BOP)-treated Syrian golden hamster model to suppress the progression of pancreatic intraepithelial neoplasms (PanIN) using unmodified (free drug) combinations of ACS, and nanoencapsulated (solid lipid nanoparticles; SLN) combinations of aspirin, curcumin, and free sulforaphane. The use of three different doses (low, medium, and high) of unmodified ACS combinations exhibited reduction in tumor incidence by 18%, 50%, and 68.7% respectively; whereas the modified nanoencapsulated ACS regimens reduced tumor incidence by 33%, 67%, and 75%, respectively, at 10 times lower dose compared with the free drug combinations. Similarly, although the unmodified free ACS showed a notable reduction in cell proliferation, the SLN encapsulated ACS regimens showed significant reduction in cell proliferation at 6.3%, 58.6%, and 72.8% as evidenced by proliferating cell nuclear antigen expression. Cell apoptotic indices were also upregulated by 1.5, 2.8, and 3.2 times, respectively, compared with BOP control. These studies provide a proof-of-concept for the use of an oral, low-dose, nanotechnology-based combinatorial regimen for the long-term chemoprevention of pancreatic cancer. Cancer Prev Res; 6(10); 1015–25. ©2013 AACR.


Biomarkers in Cancer | 2010

Identification of Gene Expression Signature in Estrogen Receptor Positive Breast Carcinoma

Arvind Thakkar; Hemanth Raj; Debarshi Chakrabarti; Ravishankar; N. Saravanan; Bhaskaran Muthuvelan; Arun Balakrishnan; Muralidhara Padigaru

A significant group of patient with estrogen receptor (ER) α positive breast tumors fails to appreciably respond to endocrine therapy. An increased understanding of the molecular basis of estrogen-mediated signal transduction and resultant gene expression may lead to novel strategies for treating breast cancer. In this study, we sought to identify the dysregulated genes in breast tumors related to ERα status. Microarray analyses of 31 tumor samples showed 108 genes differentially expressed in ERα (+) and ERα (–) primary breast tumors. Further analyses of gene lists indicated that a significant number of dysregulated genes were involved in mRNA transcription and cellular differentiation. The majority of these genes were found to have promoter-binding sites for E74-like factor 5 (ELF5; 54.6% genes), E2F transcription factor 1 (E2F1; 22.2% genes), and nuclear transcription factor Y alpha (NFYA; 32.4% genes). Six candidate genes (NTN4, SLC7A8, MLPH, ENPP1, LAMB2, and PLAT) with differential expression were selected for further validation studies using RT-qPCR (76 clinical specimen) and immunohistochemistry (48 clinical specimen). Our studies indicate significant overexpression of all the six genes in ERα (+) breast tumors as compared to ERα (–) breast tumors. In vitro studies using T-47D breast cancer cell line confirmed the estrogen dependant expression of four of the above six genes (SLC7A8, ENPP1, LAMB2, and PLAT). Collectively, our study provides further insights into the molecular basis of estrogen-dependent breast cancer and identifies “candidate biomarkers” that could be useful for predicting endocrine responsiveness.


Biochemical and Biophysical Research Communications | 2010

Effect of nephrotoxicants and hepatotoxicants on gene expression profile in human peripheral blood mononuclear cells

Shruta S. Dadarkar; Lyle C. Fonseca; Arvind Thakkar; Prabha B. Mishra; Ashok K. Rangasamy; Muralidhara Padigaru

Studying peripheral blood transcriptome in the quest for translational markers of toxicity is considered to be an attractive offshoot in the field of toxicogenomics. Moreover, it is acknowledged that, xenobiotics which cause a toxic response through similar mechanisms lead to distinctive gene expression patterns. The current study was undertaken to gauge the response of an accessible surrogate tissue, such as blood, to drug-induced perturbations aimed at deriving gene expression patterns. Human peripheral blood mononuclear cells (hPBMC) were exposed to conventional drugs, with reported kidney and/or liver injury, in order to determine their transcriptomic response. Test drugs were divided into two classes viz., drugs affecting kidney (cyclophosphamide, amphotericin B, gentamicin and cisplatin) and liver (acetaminophen, rosiglitazone, fluconazole and isoniazid). After performing gene expression analysis and hierarchical clustering, signature patterns for the two classes were obtained, with a set of 365 genes that can discriminate the two classes of drugs. Our results imply that transcriptional profile of hPBMC get altered as a consequence of drug exposure and unique patterns indicative of specific organ toxicity can hence be deduced. These signature patterns obtained for drugs could be studied for their qualification to identify drug-induced toxicity.


International Journal of Oncology | 2015

Evaluation of ibuprofen loaded solid lipid nanoparticles and its combination regimens for pancreatic cancer chemoprevention

Arvind Thakkar; Sushma Chenreddy; Jeffrey Wang; Sunil Prabhu

The objective of the present study was to establish the individual and combined chemopreventive potential of a widely used non-steroidal anti-inflammatory drug, ibuprofen (IBU), encapsulated in solid lipid nanoparticles (SLNs) for the chemoprevention of pancreatic cancer. The IBU SLNs were optimized using various lipids (Stearic acid, Compritol 888 ATO and Tripalmitin) and surfactants (Poloxamer 188, Tween-80). The synergistic effect of combination of IBU with sulforaphane (SFN) was also evaluated. Cell viability studies were conducted followed by colony formation and NF-κB DNA binding assays. The IC50 concentration of free IBU in human pancreatic cancer Panc-1 and MIA PaCa-2 cells were 1.25 and 1.26 mM, respectively. SLN optimization study of IBU revealed stearic acid (1:2 drug to lipid ratio) formulated with Poloxamer 188 to be the most efficacious in cell viability study. Upon encapsulation in SLNs, IC50 concentration of IBU-SLN was 113.8 and 122.6 µM for Panc-1 and MIA PACa-2 cells, respectively, reflecting a 10-fold reduction compared to free IBU. Combinations of low doses of free IBU (250 µM) and SFN (5 µM) reduced cell viability by ~55% (P<0.01), whereas a lower dose of encapsulated IBU-SLN (62.5 µM) and free SFN (5 µM) reduced cell viability by ~80% (P<0.001) for both Panc-1 and MIA PaCa-2 cells. These results reflect 4-fold reduction in IBU-SLN dose in combination compared to free IBU. Moreover, IBU-SLN and free SFN combination reduced number of colonies by ~50% (P<0.01). Further, IBU-SLN and SFN combinations showed down-regulation of DNA binding activity of the p50 subunit of NF-κB. In conclusion, these preliminary results demonstrate the potential of IBU as a chemopreventive agent against pancreatic cancer. Furthermore, when encapsulated in nanotechnology-based SLN delivery systems and delivered in combination with SFN provide evidence of a promising approach for pancreatic cancer prevention and therapy.


Cancer Prevention Research | 2015

Prevention of skin carcinogenesis by the β-blocker carvedilol.

Andy Chang; Steven Yeung; Arvind Thakkar; Kevin M. Huang; Mandy Liu; Rhye-Samuel Kanassatega; Cyrus Parsa; Robert Orlando; Edwin K. Jackson; Bradley T. Andresen; Ying Huang

The stress-related catecholamine hormones and the α- and β-adrenergic receptors (α- and β-AR) may affect carcinogenesis. The β-AR GRK/β-arrestin biased agonist carvedilol can induce β-AR–mediated transactivation of the EGFR. The initial purpose of this study was to determine whether carvedilol, through activation of EGFR, can promote cancer. Carvedilol failed to promote anchorage-independent growth of JB6 P+ cells, a skin cell model used to study tumor promotion. However, at nontoxic concentrations, carvedilol dose dependently inhibited EGF-induced malignant transformation of JB6 P+ cells, suggesting that carvedilol has chemopreventive activity against skin cancer. Such effect was not observed for the β-AR agonist isoproterenol and the β-AR antagonist atenolol. Gene expression, receptor binding, and functional studies indicate that JB6 P+ cells only express β2-ARs. Carvedilol, but not atenolol, inhibited EGF-mediated activator protein-1 (AP-1) activation. A topical 7,12-dimethylbenz(α)anthracene (DMBA)-induced skin hyperplasia model in SENCAR mice was utilized to determine the in vivo cancer preventative activity of carvedilol. Both topical and oral carvedilol treatment inhibited DMBA-induced epidermal hyperplasia (P < 0.05) and reduced H-ras mutations; topical treatment being the most potent. However, in models of established cancer, carvedilol had modest to no inhibitory effect on tumor growth of human lung cancer A549 cells in vitro and in vivo. In conclusion, these results suggest that the cardiovascular drug carvedilol may be repurposed for skin cancer chemoprevention, but may not be an effective treatment of established tumors. More broadly, this study suggests that β-ARs may serve as a novel target for cancer prevention. Cancer Prev Res; 8(1); 27–36. ©2014 AACR.


PLOS ONE | 2016

Calcitonin Receptor-Zonula Occludens-1 Interaction Is Critical for Calcitonin-Stimulated Prostate Cancer Metastasis.

Ahmed Aljameeli; Arvind Thakkar; Shibu Thomas; Vijaybasker Lakshmikanthan; Kenneth A. Iczkowski; Girish V. Shah

The role of neuroendocrine peptide calcitonin (CT) and its receptor (CTR) in epithelial cancer progression is an emerging concept with great clinical potential. Expression of CT and CTR is frequently elevated in prostate cancers (PCs) and activation of CT–CTR axis in non-invasive PC cells induces an invasive phenotype. Here we show by yeast-two hybrid screens that CTR associates with the tight junction protein Zonula Occludens-1 (ZO-1) via the interaction between the type 1 PDZ motif at the carboxy-terminus of CTR and the PDZ3 domain of ZO-1. Mutation of either the CTR C-PDZ-binding motif or the ZO-1-PDZ3 domain did not affect binding of CTR with its ligand or G-protein-mediated signaling but abrogated destabilizing actions of CT on tight junctions and formation of distant metastases by orthotopically implanted PC cells in nude mice, indicating that these PDZ domain interactions were pathologically relevant. Further, we observed CTR-ZO-1 interactions in PC specimens by proximity ligation immunohistochemistry, and identified that the number of interactions in metastatic PC specimens was several-fold larger than in non-metastatic PC. Our results for the first time demonstrate a mechanism by which PDZ-mediated interaction between CTR and ZO1 is required for CT-stimulated metastasis of prostate cancer. Since many receptors contain PDZ-binding motifs, this would suggest that PDZ-binding motif-adaptor protein interactions constitute a common mechanism for cancer metastasis.


Biomarker Insights | 2015

High Expression of Three-Gene Signature Improves Prediction of Relapse-Free Survival in Estrogen Receptor-Positive and Node-Positive Breast Tumors.

Arvind Thakkar; Hemanth Raj; Ravishankar; Bhaskaran Muthuvelan; Arun Balakrishnan; Muralidhara Padigaru

The objective of the present study was to validate prognostic gene signature for estrogen receptor alpha-positive (ERα+) and lymph node (+) breast cancer for improved selection of patients for adjuvant therapy In our previous study, we identified a group of seven genes (GATA3, NTN4, SLC7A8, ENPP1, MLPH, LAMB2, and PLAT) that show elevated messenger RNA (mRNA) expression levels in ERα (+) breast cancer patient samples. The prognostic values of these genes were evaluated using gene expression data from three public data sets of breast cancer patients (n = 395). Analysis of ERα (+) breast cancer cohort (n = 195) showed high expression of GATA3, NTN4, and MLPH genes significantly associated with longer relapse-free survival (RFS). Next cohort of ERα (+) and node (+) samples (n = 109) revealed high mRNA expression of GATA3, SLC7A8, and MLPH significantly associated with longer RFS. Multivariate analysis of combined three-gene signature for ERα (+) cohort, and ERα (+) and node (+) cohorts showed better hazard ratio than individual genes. The validated three-gene signature sets for ERα (+) cohort, and ERα (+) and node (+) cohort may have potential clinical utility since they demonstrated predictive and prognostic ability in three independent public data sets.


European Journal of Pharmacology | 2011

NF-κB-mediated anti-inflammatory activity of the sesquiterpene lactone 7-hydroxyfrullanolide

Lyle C. Fonseca; Shruta S. Dadarkar; Aurelio S. Lobo; Prabha Mishra; Arvind Thakkar; Shanthi Chandrababu; Muralidhara Padigaru

Microarray technology can be used to study the molecular mechanisms of new chemical entities with the aim to develop effective therapeutics. 7-Hydroxyfrullanolide (7HF) is a sesquiterpene lactone that was found to be efficacious in multiple animal models of inflammation by suppression of pro-inflammatory cytokines; however, its molecular mechanism of action remains unclear. We investigated the effects of 7HF on lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells using microarray-based gene expression studies and explored the molecular targets affected. Gene expression profiles and pathway analysis revealed that 7HF potently suppressed multiple inflammatory pathways induced by LPS. More importantly, 7HF was found to inhibit NF-κB related transcripts. These transcripts were further validated using freshly isolated synovial cells from rheumatoid arthritis patients, thus clinically validating our findings. Cell-based imaging and subsequent Western blot analysis demonstrated that 7HF inhibited the translocation of NF-κB into the nucleus by directly inhibiting the phosphorylation of IKK-β. Since the transcription of adhesion molecules is regulated by NF-κB, further investigation showed that 7HF dose-dependently suppressed ICAM-1, VCAM-1 and E-selectin expression on LPS-stimulated endothelial cells as well as inhibited the adhesion of monocytes to LPS-stimulated endothelial cells. Taken together, our results reveal that 7HF possesses NF-κB inhibitory potential and suggest a likely molecular mechanism of its anti-inflammatory activity.

Collaboration


Dive into the Arvind Thakkar's collaboration.

Top Co-Authors

Avatar

Sunil Prabhu

Western University of Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Wang

Western University of Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Sushma Chenreddy

Western University of Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Girish V. Shah

University of Louisiana at Monroe

View shared research outputs
Top Co-Authors

Avatar

Ahmed Aljameeli

University of Louisiana at Lafayette

View shared research outputs
Top Co-Authors

Avatar

B. Karthik Grandhi

Western University of Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Dhruvitkumar Sutaria

Western University of Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Shibu Thomas

University of Louisiana at Lafayette

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley T. Andresen

Western University of Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge