Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arvind Varsani is active.

Publication


Featured researches published by Arvind Varsani.


PLOS ONE | 2014

SDT: a virus classification tool based on pairwise sequence alignment and identity calculation.

Brejnev Muhire; Arvind Varsani; Darren P. Martin

The perpetually increasing rate at which viral full-genome sequences are being determined is creating a pressing demand for computational tools that will aid the objective classification of these genome sequences. Taxonomic classification approaches that are based on pairwise genetic identity measures are potentially highly automatable and are progressively gaining favour with the International Committee on Taxonomy of Viruses (ICTV). There are, however, various issues with the calculation of such measures that could potentially undermine the accuracy and consistency with which they can be applied to virus classification. Firstly, pairwise sequence identities computed based on multiple sequence alignments rather than on multiple independent pairwise alignments can lead to the deflation of identity scores with increasing dataset sizes. Also, when gap-characters need to be introduced during sequence alignments to account for insertions and deletions, methodological variations in the way that these characters are introduced and handled during pairwise genetic identity calculations can cause high degrees of inconsistency in the way that different methods classify the same sets of sequences. Here we present Sequence Demarcation Tool (SDT), a free user-friendly computer program that aims to provide a robust and highly reproducible means of objectively using pairwise genetic identity calculations to classify any set of nucleotide or amino acid sequences. SDT can produce publication quality pairwise identity plots and colour-coded distance matrices to further aid the classification of sequences according to ICTV approved taxonomic demarcation criteria. Besides a graphical interface version of the program for Windows computers, command-line versions of the program are available for a variety of different operating systems (including a parallel version for cluster computing platforms).


Journal of Virology | 2006

Recombination Patterns in Aphthoviruses Mirror Those Found in Other Picornaviruses

Livio Heath; Eric van der Walt; Arvind Varsani; Darren P. Martin

ABSTRACT Foot-and-mouth disease virus (FMDV) is thought to evolve largely through genetic drift driven by the inherently error-prone nature of its RNA polymerase. There is, however, increasing evidence that recombination is an important mechanism in the evolution of these and other related picornoviruses. Here, we use an extensive set of recombination detection methods to identify 86 unique potential recombination events among 125 publicly available FMDV complete genome sequences. The large number of events detected between members of different serotypes suggests that horizontal flow of sequences among the serotypes is relatively common and does not incur severe fitness costs. Interestingly, the distribution of recombination breakpoints was found to be largely nonrandom. Whereas there are clear breakpoint cold spots within the structural genes, two statistically significant hot spots precisely separate these from the nonstructural genes. Very similar breakpoint distributions were found for other picornovirus species in the genera Enterovirus and Teschovirus. Our results suggest that genome regions encoding the structural proteins of both FMDV and other picornaviruses are functionally interchangeable modules, supporting recent proposals that the structural and nonstructural coding regions of the picornaviruses are evolving largely independently of one another.


Journal of Virology | 2009

Widely Conserved Recombination Patterns among Single-Stranded DNA Viruses

Pierre Lefeuvre; Jean-Michel Lett; Arvind Varsani; Darren P. Martin

ABSTRACT The combinatorial nature of genetic recombination can potentially provide organisms with immediate access to many more positions in sequence space than can be reached by mutation alone. Recombination features particularly prominently in the evolution of a diverse range of viruses. Despite rapid progress having been made in the characterization of discrete recombination events for many species, little is currently known about either gross patterns of recombination across related virus families or the underlying processes that determine genome-wide recombination breakpoint distributions observable in nature. It has been hypothesized that the networks of coevolved molecular interactions that define the epistatic architectures of virus genomes might be damaged by recombination and therefore that selection strongly influences observable recombination patterns. For recombinants to thrive in nature, it is probably important that the portions of their genomes that they have inherited from different parents work well together. Here we describe a comparative analysis of recombination breakpoint distributions within the genomes of diverse single-stranded DNA (ssDNA) virus families. We show that whereas nonrandom breakpoint distributions in ssDNA virus genomes are partially attributable to mechanistic aspects of the recombination process, there is also a significant tendency for recombination breakpoints to fall either outside or on the peripheries of genes. In particular, we found significantly fewer recombination breakpoints within structural protein genes than within other gene types. Collectively, these results imply that natural selection acting against viruses expressing recombinant proteins is a major determinant of nonrandom recombination breakpoint distributions observable in most ssDNA virus families.


PLOS Pathogens | 2010

The Spread of Tomato Yellow Leaf Curl Virus from the Middle East to the World

Pierre Lefeuvre; Darren P. Martin; Gordon William Harkins; Philippe Lemey; Alistair J. A. Gray; Sandra Meredith; Francisco M. Lakay; Adérito L. Monjane; Jean-Michel Lett; Arvind Varsani; Jahangir Heydarnejad

The ongoing global spread of Tomato yellow leaf curl virus (TYLCV; Genus Begomovirus, Family Geminiviridae) represents a serious looming threat to tomato production in all temperate parts of the world. Whereas determining where and when TYLCV movements have occurred could help curtail its spread and prevent future movements of related viruses, determining the consequences of past TYLCV movements could reveal the ecological and economic risks associated with similar viral invasions. Towards this end we applied Bayesian phylogeographic inference and recombination analyses to available TYLCV sequences (including those of 15 new Iranian full TYLCV genomes) and reconstructed a plausible history of TYLCVs diversification and movements throughout the world. In agreement with historical accounts, our results suggest that the first TYLCVs most probably arose somewhere in the Middle East between the 1930s and 1950s (with 95% highest probability density intervals 1905–1972) and that the global spread of TYLCV only began in the 1980s after the evolution of the TYLCV-Mld and -IL strains. Despite the global distribution of TYLCV we found no convincing evidence anywhere other than the Middle East and the Western Mediterranean of epidemiologically relevant TYLCV variants arising through recombination. Although the region around Iran is both the center of present day TYLCV diversity and the site of the most intensive ongoing TYLCV evolution, the evidence indicates that the region is epidemiologically isolated, which suggests that novel TYLCV variants found there are probably not direct global threats. We instead identify the Mediterranean basin as the main launch-pad of global TYLCV movements.


Archives of Virology | 2014

Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus

Arvind Varsani; Jesús Navas-Castillo; Enrique Moriones; Cecilia Hernández-Zepeda; A. M. Idris; Judith K. Brown; F. Murilo Zerbini; Darren P. Martin

Abstract The family Geminiviridae includes plant-infecting circular single-stranded DNA viruses that have geminate particle morphology. Members of this family infect both monocotyledonous and dicotyledonous plants and have a nearly global distribution. With the advent of new molecular tools and low-cost sequencing, there has been a significant increase in the discovery of new geminiviruses in various cultivated and non-cultivated plants. In this communication, we highlight the establishment of three new genera (Becurtovirus, Eragrovirus and Turncurtovirus) to accommodate various recently discovered geminiviruses that are highly divergent and, in some cases, have unique genome architectures. The genus Becurtovirus has two viral species, Beet curly top Iran virus (28 isolates; leafhopper vector Circulifer haematoceps) and Spinach curly top Arizona virus (1 isolate; unknown vector), whereas the genera Eragrovirus and Turncurtovirus each have a single assigned species: Eragrostis curvula streak virus (6 isolates; unknown vector) and Turnip curly top virus (20 isolates; leafhopper vector Circulifer haematoceps), respectively. Based on analysis of all of the genome sequences available in public databases for each of the three new genera, we provide guidelines and protocols for species and strain classification within these three new genera.


Archives of Virology | 2017

Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017)

M. J. Adams; Elliot J. Lefkowitz; Andrew M. Q. King; Balázs Harrach; Robert L. Harrison; Nick J. Knowles; Andrew M. Kropinski; Mart Krupovic; Jens H. Kuhn; Arcady Mushegian; Max L. Nibert; Sead Sabanadzovic; Hélène Sanfaçon; Stuart G. Siddell; Peter Simmonds; Arvind Varsani; Francisco Murilo Zerbini; Alexander E. Gorbalenya; Andrew J. Davison

This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2017.


Nature Reviews Microbiology | 2017

Consensus statement: Virus taxonomy in the age of metagenomics

Peter Simmonds; M. J. Adams; Mária Benkő; Mya Breitbart; J. Rodney Brister; Eric B. Carstens; Andrew J. Davison; Eric Delwart; Alexander E. Gorbalenya; Balázs Harrach; Roger Hull; Andrew M. Q. King; Eugene V. Koonin; Mart Krupovic; Jens H. Kuhn; Elliot J. Lefkowitz; Max L. Nibert; Richard J. Orton; Marilyn J. Roossinck; Sead Sabanadzovic; Matthew B. Sullivan; Curtis A. Suttle; Robert B. Tesh; René van der Vlugt; Arvind Varsani; F. Murilo Zerbini

The number and diversity of viral sequences that are identified in metagenomic data far exceeds that of experimentally characterized virus isolates. In a recent workshop, a panel of experts discussed the proposal that, with appropriate quality control, viruses that are known only from metagenomic data can, and should be, incorporated into the official classification scheme of the International Committee on Taxonomy of Viruses (ICTV). Although a taxonomy that is based on metagenomic sequence data alone represents a substantial departure from the traditional reliance on phenotypic properties, the development of a robust framework for sequence-based virus taxonomy is indispensable for the comprehensive characterization of the global virome. In this Consensus Statement article, we consider the rationale for why metagenomic sequence data should, and how it can, be incorporated into the ICTV taxonomy, and present proposals that have been endorsed by the Executive Committee of the ICTV.


Journal of General Virology | 2012

Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta)

Karyna Rosario; Anisha Dayaram; Milen Marinov; Jessica L. Ware; Simona Kraberger; Daisy Stainton; Mya Breitbart; Arvind Varsani

Viruses with circular ssDNA genomes that encode a replication initiator protein (Rep) are among the smallest viruses known to infect both eukaryotic and prokaryotic organisms. In the past few years an overwhelming diversity of novel circular Rep-encoding ssDNA (CRESS-DNA) viruses has been unearthed from various hosts and environmental sources. Since there is limited information regarding CRESS-DNA viruses in invertebrates, this study explored the diversity of CRESS-DNA viruses circulating among insect populations by targeting dragonflies (Epiprocta), top insect predators that accumulate viruses from their insect prey over space and time. Using degenerate PCR and rolling circle amplification coupled with restriction digestion, 17 CRESS-DNA viral genomes were recovered from eight different dragonfly species collected in tropical and temperate regions. Nine of the genomes are similar to cycloviruses and represent five species within this genus, suggesting that cycloviruses are commonly associated with insects. Three of the CRESS-DNA viruses share conserved genomic features with recently described viruses similar to the mycovirus Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1, leading to the proposal of the genus Gemycircularvirus. The remaining viruses are divergent species representing four novel CRESS-DNA viral genera, including a gokushovirus-like prokaryotic virus (microphage) and three eukaryotic viruses with Reps similar to circoviruses. The novelty of CRESS-DNA viruses identified in dragonflies using simple molecular techniques indicates that there is an unprecedented diversity of ssDNA viruses among insect populations.


Viruses | 2011

Recombination in eukaryotic single stranded DNA viruses

Darren P. Martin; Philippe Biagini; Pierre Lefeuvre; Michael Golden; Philippe Roumagnac; Arvind Varsani

Although single stranded (ss) DNA viruses that infect humans and their domesticated animals do not generally cause major diseases, the arthropod borne ssDNA viruses of plants do, and as a result seriously constrain food production in most temperate regions of the world. Besides the well known plant and animal-infecting ssDNA viruses, it has recently become apparent through metagenomic surveys of ssDNA molecules that there also exist large numbers of other diverse ssDNA viruses within almost all terrestrial and aquatic environments. The host ranges of these viruses probably span the tree of life and they are likely to be important components of global ecosystems. Various lines of evidence suggest that a pivotal evolutionary process during the generation of this global ssDNA virus diversity has probably been genetic recombination. High rates of homologous recombination, non-homologous recombination and genome component reassortment are known to occur within and between various different ssDNA virus species and we look here at the various roles that these different types of recombination may play, both in the day-to-day biology, and in the longer term evolution, of these viruses. We specifically focus on the ecological, biochemical and selective factors underlying patterns of genetic exchange detectable amongst the ssDNA viruses and discuss how these should all be considered when assessing the adaptive value of recombination during ssDNA virus evolution.


Journal of Virological Methods | 2008

A protocol for the rapid isolation of full geminivirus genomes from dried plant tissue

Dionne N. Shepherd; Darren P. Martin; Pierre Lefeuvre; Adérito L. Monjane; Betty E. Owor; Edward P. Rybicki; Arvind Varsani

A high-throughput method of isolating and cloning geminivirus genomes from dried plant material, by combining an Extract-n-Amp-based DNA isolation technique with rolling circle amplification (RCA) of viral DNA, is presented. Using this method an attempt was made to isolate and clone full geminivirus genomes/genome components from 102 plant samples, including dried leaves stored at room temperature for between 6 months and 10 years, with an average hands-on-time to RCA-ready DNA of 15 min per 20 samples. While storage of dried leaves for up to 6 months did not appreciably decrease cloning success rates relative to those achieved with fresh samples, efficiency of the method decreased with increasing storage time. However, it was still possible to clone virus genomes from 47% of 10-year-old samples. To illustrate the utility of this simple method for high-throughput geminivirus diversity studies, six Maize streak virus genomes, an Abutilon mosaic virus DNA-B component and the DNA-A component of a previously unidentified New Word begomovirus species were fully sequenced. Genomic clones of the 69 other viruses were verified as such by end sequencing. This method should be extremely useful for the study of any circular DNA plant viruses with genome component lengths smaller than the maximum size amplifiable by RCA.

Collaboration


Dive into the Arvind Varsani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Lefeuvre

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

Daisy Stainton

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anisha Dayaram

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge