Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aryana Zavosh is active.

Publication


Featured researches published by Aryana Zavosh.


Neuroendocrinology | 1998

Food Deprivation Decreases mRNA and Activity of the Rat Dopamine Transporter

Terrell A. Patterson; Michelle D. Brot; Aryana Zavosh; James O. Schenk; Patricia Szot; Dianne P. Figlewicz

We have hypothesized that the midbrain dopamine (DA) neurons are a target for insulin action in the central nervous system (CNS). In support of this hypothesis, we have previously demonstrated that direct intracerebroventricular infusion of insulin results in an increase in mRNA levels for the DA reuptake transporter (DAT). In this study, 24- to 36-hour food deprivation was used as a model of decreased CNS insulin levels, to test whether DAT mRNA levels, DAT protein concentration or DAT functional activity would be decreased. DAT mRNA levels, assessed by in situ hybridization, were significantly decreased in the ventral tegmental area/substantia nigra pars compacta (VTA/SNc) (77 ± 7% of controls, p < 0.05) of food-deprived (hypoinsulinemic) rats. Binding of a specific high-affinity DAT ligand (125I-RTI-121) to membranes from brain regions of fasted or free-feeding rats provided an estimate of DAT protein, which was unchanged in both of the major terminal projection fields, the striatum and nucleus accumbens (NAc). In addition, we utilized the rotating disk electrode voltametry technique to assess possible changes in the function of the DAT in fasting (hypoinsulinemic) rats. The Vmax of DA uptake was significantly decreased (87 ± 7% of control, p < 0.05), without a change in the Km of uptake, in striatum from fasted rats. In vitro incubation with a physiological concentration (1 nM) of insulin resulted in an increase of striatal DA uptake to control levels. We conclude that striatal DAT function can be modulated by fasting and nutritional status, with a contribution by insulin.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Insulin acts at different CNS sites to decrease acute sucrose intake and sucrose self-administration in rats.

Dianne P. Figlewicz; Jennifer L. Bennett; Sepideh Aliakbari; Aryana Zavosh; Alfred J. Sipols

Findings from our laboratory and others have demonstrated that the hormone insulin has chronic effects within the CNS to regulate energy homeostasis and to decrease brain reward function. In this study, we compared the acute action of insulin to decrease intake of a palatable food in two different behavioral tasks-progressive ratios sucrose self-administration and micro opioid-stimulated sucrose feeding-when administered into several insulin-receptive sites of the CNS. We tested insulin efficacy within the medial hypothalamic arcuate (ARC) and paraventricular (PVN) nuclei, the nucleus accumbens, and the ventral tegmental area. Administration of insulin at a dose that has no chronic effect on body weight (5 mU) into the ARC significantly suppressed sucrose self-administration (75+/-5% of paired control). However, although the mu opioid DAMGO, [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin acetate salt, stimulated sucrose intake at all four CNS sites, the ventral tegmental area was the only sensitive site for a direct effect of insulin to antagonize acute (60 min) micro opioid-stimulated sucrose feeding: sucrose intake was 53+/-8% of DAMGO-induced feeding, when insulin was coadministered with DAMGO. These findings demonstrate that free feeding of sucrose, and motivated work for sucrose, can be modulated within unique sites of the CNS reward circuitry. Further, they support the interpretation that adiposity signals, such as insulin, can decrease different aspects of ingestion of a palatable food, such as sucrose, in an anatomically specific manner.


Brain Research Bulletin | 1998

Dopamine transporter mRNA is increased in the CNS of Zucker fatty (fa/fa) rats

Dianne P. Figlewicz; Terrell A. Patterson; Laura Beth Johnson; Aryana Zavosh; Paige A. Israel; Patricia Szot

The obese Zucker fa/fa rat is characterized by hyperinsulinemia, obesity, and altered monoamine metabolism in the central nervous system (CNS). It has been proposed that the changes in monoamine metabolism may contribute to the metabolic pathophysiology of these animals. Because it has been reported that insulin may regulate the catecholamine reuptake transporters, which terminate monoaminergic synaptic signaling, in the present study we tested whether messenger ribonucleic acid (mRNA) levels for the noradrenergic (NE) or dopaminergic (DA) transporters were altered in obese fa/fa vs. lean Fa/Fa Zucker rats. We found significantly elevated DA transporter levels in both the ventral tegmental area/substantia nigra pars compacta (VTA/SNc) and zona incerta (ZI) of obese Zucker fa/fa rats (164 +/- 24% of control levels, p = .024; and 316 +/- 61% of control levels, p = .019, respectively). Measurement of mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme for NE and DA synthesis revealed no effect of the fa gene in either NE or DA neurons. These findings suggest that increased DA clearance, and perhaps decreased DA signaling, may occur in the obese Zucker fa/fa rat.


Appetite | 2013

Moderate high fat diet increases sucrose self-administration in young rats

Dianne P. Figlewicz; Jennifer L. Jay; Molly A. Acheson; Irwin J. Magrisso; Constance H. West; Aryana Zavosh; Stephen C. Benoit; Jon F. Davis

We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However, AGRP mRNA levels in the hypothalamus were significantly elevated. We demonstrated that increased activation of AGRP neurons is associated with motivated behavior, and that exogenous (third cerebroventricular) AGRP administration resulted in significantly increased motivation for sucrose. These observations suggest that increased expression and activity of AGRP in the medial hypothalamus may underlie the increased responding for sucrose caused by the high fat diet intervention. Finally, we compared motivation for sucrose in pubertal vs. adult rats and observed increased motivation for sucrose in the pubertal rats, which is consistent with previous reports that young animals and humans have an increased preference for sweet taste, compared with adults. Together, our studies suggest that background diet plays a strong modulatory role in motivation for sweet taste in adolescent animals.


American Journal of Physiology-endocrinology and Metabolism | 2008

The selective serotonin reuptake inhibitor sertraline enhances counterregulatory responses to hypoglycemia

Nicole M. Sanders; Charles W. Wilkinson; Gerald J. Taborsky; Salwa Al-Noori; Wendi Daumen; Aryana Zavosh; Dianne P. Figlewicz

Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed for patients with comorbid diabetes and depression. Clinical case studies in diabetic patients, however, suggest that SSRI therapy may exacerbate hypoglycemia. We hypothesized that SSRIs might increase the risk of hypoglycemia by impairing hormonal counterregulatory responses (CRR). We evaluated the effect of the SSRI sertraline on hormonal CRR to single or recurrent hypoglycemia in nondiabetic rats. Since there are time-dependent effects of SSRIs on serotonin neurotransmission that correspond with therapeutic action, we evaluated the effect of 6- or 20-day sertraline treatment on hypoglycemia CRR. We found that 6-day sertraline (SERT) treatment specifically enhanced the epinephrine response to a single bout of hypoglycemia vs. vehicle (VEH)-treated rats (t = 120: VEH, 2,573 +/- 448 vs. SERT, 4,202 +/- 545 pg/ml, P < 0.05). In response to recurrent hypoglycemia, VEH-treated rats exhibited the expected impairment in epinephrine secretion (t = 60: 678 +/- 73 pg/ml) vs. VEH-treated rats experiencing first-time hypoglycemia (t = 60: 2,081 +/- 436 pg/ml, P < 0.01). SERT treatment prevented the impaired epinephrine response in recurrent hypoglycemic rats (t = 60: 1,794 +/- 276 pgl/ml). In 20-day SERT-treated rats, epinephrine, norepinephrine, and glucagon CRR were all significantly elevated above VEH-treated controls in response to hypoglycemia. Similarly to 6-day SERT treatment, 20-day SERT treatment rescued the impaired epinephrine response in recurrent hypoglycemic rats. Our data demonstrate that neither 6- nor 20-day sertraline treatment impaired hormonal CRR to hypoglycemia in nondiabetic rats. Instead, sertraline treatment resulted in an enhancement of hypoglycemia CRR and prevented the impaired adrenomedullary response normally observed in recurrent hypoglycemic rats.


Brain Research Bulletin | 1999

Desipramine treatment decreases 3H-nisoxetine binding and norepinephrine transporter mRNA in SK-N-SHSY5Y cells ☆

Aryana Zavosh; Jonathan Schaefer; Anne Ferrel; Dianne P. Figlewicz

The antidepressant desipramine has been shown to decrease synaptic membrane concentrations of the norepinephrine re-uptake transporter (NET) in vivo and in vitro, on both an acute and a chronic basis. The possible contribution of decreased NET synthesis to the chronic downregulation of the NETs has not been definitively established. In this study, we treated SK-N-SHSY5Y cells with 100 nM desipramine for 24 or 72 h, and measured 3H-nisoxetine binding (as an estimate of NETs) and NET mRNA by quantitative reverse transcription polymerase chain reaction. Similar to what has been reported previously, membrane 3H-nisoxetine binding was significantly decreased at both 24 and 72 h (approximately 50% at both time points). However, a significant decrease (64 +/- 8% of paired control) of NET mRNA was observed only at the 72-h time point. We conclude that decreased NET synthesis may contribute to the chronic, but not acute, effect of desipramine to downregulate the NET.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Sucrose self-administration and CNS activation in the rat

Dianne P. Figlewicz; Jennifer L. Bennett-Jay; Sepideh Kittleson; Alfred J. Sipols; Aryana Zavosh

We have previously reported that administration of insulin into the arcuate nucleus of the hypothalamus decreases motivation for sucrose, assessed by a self-administration task, in rats. Because the pattern of central nervous system (CNS) activation in association with sucrose self-administration has not been evaluated, in the present study, we measured expression of c-Fos as an index of neuronal activation. We trained rats to bar-press for sucrose, according to a fixed-ratio (FR) or progressive-ratio (PR) schedule and mapped expression of c-Fos immunoreactivity in the CNS, compared with c-Fos expression in handled controls. We observed a unique expression of c-Fos in the medial hypothalamus (the arcuate, paraventricular, retrochiasmatic, dorsomedial, and ventromedial nuclei) in association with the onset of PR performance, and expression of c-Fos in the lateral hypothalamus and the bed nucleus of stria terminalis in association with the onset of FR performance. c-Fos expression was increased in the nucleus accumbens of both FR and PR rats. Our study emphasizes the importance of both hypothalamic energy homeostasis circuitry and limbic circuitry in the performance of a food reward task. Given the role of the medial hypothalamus in regulation of energy balance, our study suggests that this circuitry may contribute to reward regulation within the larger context of energy homeostasis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Recurrent Hypoglycemia Alters Hypothalamic Expression of the Regulatory Proteins FosB and Synaptophysin

Salwa Al-Noori; Nicole M. Sanders; Gerald J. Taborsky; Charles W. Wilkinson; Aryana Zavosh; Connie West; Colleen M. Sanders; Dianne P. Figlewicz

A limiting factor to the clinical management of diabetes is iatrogenic hypoglycemia. With multiple hypoglycemic episodes, the collective neuroendocrine response that restores euglycemia is impaired. In our animal model of recurrent hypoglycemia (RH), neuroendocrine deficits are accompanied by a decrease in medial hypothalamic activation. Here we tested the hypothesis that the medial hypothalamus may exhibit unique changes in the expression of regulatory proteins in response to RH. We report that expression of the immediate early gene FosB is increased in medial hypothalamic nuclei, anterior hypothalamus, and posterior paraventricular nucleus of the thalamus (THPVN) of the thalamus following RH. We identified the hypothalamic PVN, a key autonomic output site, among the regions expressing FosB. To identify the subtype(s) of neuronal populations that express FosB, we screened candidate neuropeptides of the PVN for coexpression using dual fluorescence immunohistochemistry. Among the neuropeptides analyzed [including oxytocin, vasopressin, thyrotropin-releasing hormone, and corticotropin-releasing factor (CRF)], FosB was only identified in CRF-positive neurons. Inhibitory gamma-aminobutyric acid-positive processes appear to impinge on these FosB-expressing neurons. Finally, we observed a significant decrease in the presynaptic marker synaptophysin within the PVN of RH-treated vs. saline-treated rats, suggesting that rapid alterations of synaptic morphology may occur in association with RH. Collectively, these data suggest that RH stress triggers cellular changes that support synaptic plasticity, in specific neuroanatomical sites, which may contribute to the development of hypoglycemia-associated autonomic failure.


Physiology & Behavior | 2014

Effect of recurrent yohimbine on immediate and post-hoc behaviors, stress hormones, and energy homeostatic parameters.

Dianne P. Figlewicz; S.R. Hill; Jennifer L. Jay; C.H. West; Aryana Zavosh; Alfred J. Sipols

Evidence from experimental models has suggested that acute activation of brain stress and anxiety pathways impacts subsequent behaviors that are mediated or modulated by limbic circuitry. There have been limited investigations of prior or chronic activation of these pathways on subsequent limbic-mediated behaviors. In this study, we tested whether recurrent administration of the anxiogenic compound yohimbine (YOH) could have post-injection effects on brain activation, stress hormones, and performance in sucrose self-administration and startle response paradigms. Rats received six injections across two weeks of either 2mg/kg YOH or saline. Behavioral evaluation confirmed the continued efficacy of the YOH regimen, and increased adrenal corticosterone (CORT) was observed. Several days following YOH or SAL administration, cFos, CORT and adrenocorticotropin hormone (ACTH), and behavioral performance were measured. cFos was elevated post-YOH in the hippocampus; ventral tegmental area/zona inserta; and central and medial nuclei of the amygdala. This activation is consistent with a sustained effect of YOH to activate fear and anxiety circuitries in the CNS. CORT but not ACTH was elevated in the YOH-rats following startle testing. Self-administration and startle tests suggested an increase of non-specific activity in the post-YOH rats; there was no increase in sucrose self-administration or startle response per se. Our findings suggest that recurrent YOH administration may prove a useful and reliable model for simulating recurrent stress/anxiety, and that enhancements to the paradigm such as higher or more frequent dosing of YOH could yield stronger or more extensive behavioral effects.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2018

Effect of dietary palmitic and stearic acids on sucrose motivation and hypothalamic and striatal cell signals in the rat

Dianne P. Figlewicz; Jennifer L. Jay; Constance H. West; Aryana Zavosh; Christiane S. Hampe; Jared Radtke; Murray A. Raskind; Elaine R. Peskind

We have reported that motivation for sucrose is increased in rats fed a moderate (31%) mixed-fat diet for 4-6 wk. In this study, rats were fed diets containing 32% stearic (STEAR) or palmitic (PALM) acid, and behavior, metabolic profile, and cell signals were compared with those of rats fed a matched low-fat diet (LF; 11% fat) diet. Rats fed STEAR or PALM increased sucrose motivation relative to LF rats (one-way ANOVA for lever presses; P = 0.03). Diet did not change fasting glucose, insulin, total cholesterol, triglycerides, intravenous glucose tolerance test glucose profile, percent body fat, or total kilocalories, although kilocalories as fat were increased (ANOVA, P < 0.05). Cell signals were assessed in rats ranked from high to low sucrose motivation. Diet did not alter Thr and Ser phosphorylation of Akt in the medial hypothalamus (HYP) and striatum (STR). However, Ser phosphorylation of GSK3Β was decreased in HYP and STR from both high- and low-performer tertiles of STEAR and PALM rats (ANOVA within each brain region, P < 0.05). Two histone 3 (H3) modifications were also assessed. Although there was no effect of diet on the transcription-repressive H3 modification, H3K27me3, the transcription-permissive H3 modification, H3K4me3, was significantly decreased in the HYP of high performers fed PALM or STEAR (ANOVA, P = 0.013). There was no effect of diet on H3K4me3 levels in HYP of low performers, or in STR. Our findings suggest signal-specific and brain region-specific effects of PALM or STEAR diets and may link downstream signaling effects of GSK3Β activity and H3 modifications with enhanced motivational behavior.

Collaboration


Dive into the Aryana Zavosh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia Szot

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Salwa Al-Noori

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Scott B. Evans

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge