Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arzu Onar-Thomas is active.

Publication


Featured researches published by Arzu Onar-Thomas.


Nature | 2012

Novel mutations target distinct subgroups of medulloblastoma

Giles W. Robinson; Matthew Parker; Tanya A. Kranenburg; Charles Lu; Xiang Chen; Li Ding; Timothy N. Phoenix; Erin Hedlund; Lei Wei; Xiaoyan Zhu; Nader Chalhoub; Suzanne J. Baker; Robert Huether; Richard W. Kriwacki; Natasha Curley; Radhika Thiruvenkatam; Jianmin Wang; Gang Wu; Michael Rusch; Xin Hong; Jared Becksfort; Pankaj Gupta; Jing Ma; John Easton; Bhavin Vadodaria; Arzu Onar-Thomas; Tong Lin; Shaoyi Li; Stanley Pounds; Steven W. Paugh

Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. Here, to identify mutations that drive medulloblastoma, we sequenced the entire genomes of 37 tumours and matched normal blood. One-hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27 and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin re-modellers in WNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.


Nature Genetics | 2014

The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma.

Gang Wu; Alexander K. Diaz; Barbara S. Paugh; Sherri Rankin; Bensheng Ju; Yongjin Li; Xiaoyan Zhu; Chunxu Qu; Xiang Chen; Junyuan Zhang; John Easton; Michael Edmonson; Xiaotu Ma; Charles Lu; Panduka Nagahawatte; Erin Hedlund; Michael Rusch; Stanley Pounds; Tong Lin; Arzu Onar-Thomas; Robert Huether; Richard W. Kriwacki; Matthew A. Parker; Pankaj Gupta; Jared Becksfort; Lei Wei; Heather L. Mulder; Kristy Boggs; Bhavin Vadodaria; Donald Yergeau

Pediatric high-grade glioma (HGG) is a devastating disease with a less than 20% survival rate 2 years after diagnosis. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs), by whole-genome, whole-exome and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPGs (32%), in addition to previously reported frequent somatic mutations in histone H3 genes, TP53 and ATRX, in both DIPGs and NBS-HGGs. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, NTRK2 and NTRK3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase–RAS-PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59% of pediatric HGGs, respectively, including in DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.


Journal of Clinical Oncology | 2011

Genome-Wide Analyses Identify Recurrent Amplifications of Receptor Tyrosine Kinases and Cell-Cycle Regulatory Genes in Diffuse Intrinsic Pontine Glioma

Barbara S. Paugh; Alberto Broniscer; Chunxu Qu; Claudia P. Miller; Junyuan Zhang; Ruth G. Tatevossian; James M. Olson; J. Russell Geyer; Susan N. Chi; Nasjla Saba da Silva; Arzu Onar-Thomas; Justin N. Baker; Amar Gajjar; David W. Ellison; Suzanne J. Baker

PURPOSE Long-term survival for children with diffuse intrinsic pontine glioma (DIPG) is less than 10%, and new therapeutic targets are urgently required. We evaluated a large cohort of DIPGs to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG. PATIENTS AND METHODS Single-nucleotide polymorphism arrays were used to compare the frequencies of genomic copy number abnormalities in 43 DIPGs and eight low-grade brainstem gliomas with data from adult and pediatric (non-DIPG) glioblastomas, and expression profiles were evaluated using gene expression arrays for 27 DIPGs, six low-grade brainstem gliomas, and 66 nonbrainstem low-grade gliomas. RESULTS Frequencies of specific large-scale and focal imbalances varied significantly between DIPGs and nonbrainstem pediatric glioblastomas. Focal amplifications of genes within the receptor tyrosine kinase-Ras-phosphoinositide 3-kinase signaling pathway were found in 47% of DIPGs, the most common of which involved PDGFRA and MET. Thirty percent of DIPGs contained focal amplifications of cell-cycle regulatory genes controlling retinoblastoma protein (RB) phosphorylation, and 21% had concurrent amplification of genes from both pathways. Some tumors showed heterogeneity in amplification patterns. DIPGs showed distinct gene expression signatures related to developmental processes compared with nonbrainstem pediatric high-grade gliomas, whereas expression signatures of low-grade brainstem and nonbrainstem gliomas were similar. CONCLUSION DIPGs comprise a molecularly related but distinct subgroup of pediatric gliomas. Genomic studies suggest that targeted inhibition of receptor tyrosine kinases and RB regulatory proteins may be useful therapies for DIPG.


Journal of Clinical Oncology | 2010

Lack of Efficacy of Bevacizumab Plus Irinotecan in Children With Recurrent Malignant Glioma and Diffuse Brainstem Glioma: A Pediatric Brain Tumor Consortium Study

Sridharan Gururangan; Susan N. Chi; Tina Young Poussaint; Arzu Onar-Thomas; Richard J. Gilbertson; Sridhar Vajapeyam; Henry S. Friedman; Roger J. Packer; Brian N. Rood; James M. Boyett; Larry E. Kun

PURPOSE A phase II study of bevacizumab (BVZ) plus irinotecan (CPT-11) was conducted in children with recurrent malignant glioma (MG) and intrinsic brainstem glioma (BSG). PATIENTS AND METHODS Eligible patients received two doses of BVZ intravenously (10 mg/kg) 2 weeks apart and then BVZ plus CPT-11 every 2 weeks until progressive disease, unacceptable toxicity, or a maximum of 2 years of therapy. Correlative studies included diffusion weighted and T1 dynamic contrast-enhanced permeability imaging, BVZ pharmacokinetics, and estimation of vascular endothelial growth factor receptor 2 (VEGFR-2) phosphorylation in peripheral blood mononuclear cells (PBMC) after single-agent BVZ. RESULTS Thirty-one evaluable patients received a median of two courses of BVZ plus CPT-11 (range, 1 to 19). No sustained responses were observed in either stratum. Median time to progression for all 34 eligible patients enrolled was 127 days for MG and 71 days for BSG. Progression-free survival rates at 6 months were 41.8% and 9.7% for MG and BSG, respectively. Toxicities related to BVZ included grade 1 to 3 fatigue in seven patients, grade 1 to 2 hypertension in seven patients, grade 1 CNS hemorrhage in four patients, and grade 4 CNS ischemia in two patients. The mean diffusion ratio decreased after two doses of BVZ in patients with MG only. Vascular permeability parameters did not change significantly after therapy in either stratum. Inhibition of VEGFR-2 phosphorylation in PBMC was detected in eight of 11 patients after BVZ exposure. CONCLUSION BVZ plus CPT-11 was well-tolerated but had minimal efficacy in children with recurrent malignant glioma and brainstem glioma.


Journal of Clinical Oncology | 2011

Phase I Trial of MK-0752 in Children With Refractory CNS Malignancies: A Pediatric Brain Tumor Consortium Study

Maryam Fouladi; Clinton F. Stewart; James M. Olson; Lars M. Wagner; Arzu Onar-Thomas; Mehmet Kocak; Roger J. Packer; Stewart Goldman; Sridharan Gururangan; Amar Gajjar; Tim Demuth; Larry E. Kun; James M. Boyett; Richard J. Gilbertson

PURPOSE To estimate the maximum-tolerated dose (MTD), describe dose-limiting toxicities (DLTs), and characterize pharmacokinetic properties of MK-0752, a gamma secretase inhibitor, in children with refractory or recurrent CNS malignancies. PATIENTS AND METHODS MK-0752 was administered once daily for 3 consecutive days of every 7 days at escalating dosages starting at 200 mg/m(2). The modified continual reassessment method was used to estimate the MTD. A course was 28 days in duration. Pharmacokinetic analysis was performed during the first course. Expression of NOTCH and hairy enhancer of split (HES) proteins was assessed in peripheral-blood mononuclear cells (PBMCs) before and following treatment with MK-0752. RESULTS Twenty-three eligible patients were enrolled: 10 males (median age, 8.1 years; range, 2.6 to 17.7 years) with diagnoses of brainstem glioma (n = 6), ependymoma (n = 8), medulloblastoma/primitive neuroectodermal tumor (n = 4), glioblastoma multiforme (n = 2), atypical teratoid/rhabdoid tumor (n = 1), malignant glioma (n = 1), and choroid plexus carcinoma, (n = 1). Seventeen patients were fully evaluable for toxicity. No DLTs occurred in the three patients enrolled at 200 mg/m(2)/dose. At 260 mg/m(2)/dose, DLTs occurred in two of six patients, both of whom experienced grade 3 ALT and AST. There were no grade 4 toxicities; non-dose-limiting grade 3 toxicities included hypokalemia and lymphopenia. Population pharmacokinetic values (% coefficient of variation) for MK-0752 were apparent oral clearance, 0.444 (38%) L/h/m(2); apparent volume of distribution, 7.36 (24%) L/m(2); and k(a), 0.358 (99%) hr(-1). CONCLUSION MK-0752 is well-tolerated in children with recurrent CNS malignancies. The recommended phase II dose using the 3 days on followed by 4 days off schedule is 260 mg/m(2)/dose once daily.


Journal of Clinical Oncology | 2015

Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog–Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032

Giles W. Robinson; Brent A. Orr; Gang Wu; Sridharan Gururangan; Tong Lin; Ibrahim Qaddoumi; Roger J. Packer; Stewart Goldman; Michael D. Prados; Annick Desjardins; Murali Chintagumpala; Naoko Takebe; Sue C. Kaste; Michael Rusch; Sariah Allen; Arzu Onar-Thomas; Clinton F. Stewart; Maryam Fouladi; James M. Boyett; Richard J. Gilbertson; Tom Curran; David W. Ellison; Amar Gajjar

PURPOSE Two phase II studies assessed the efficacy of vismodegib, a sonic hedgehog (SHH) pathway inhibitor that binds smoothened (SMO), in pediatric and adult recurrent medulloblastoma (MB). PATIENTS AND METHODS Adult patients enrolled onto PBTC-025B and pediatric patients enrolled onto PBTC-032 were treated with vismodegib (150 to 300 mg/d). Protocol-defined response, which had to be sustained for 8 weeks, was confirmed by central neuroimaging review. Molecular tests to identify patterns of response and insensitivity were performed when tissue was available. RESULTS A total of 31 patients were enrolled onto PBTC-025B, and 12 were enrolled onto PBTC-032. Three patients in PBTC-025B and one in PBTC-032, all with SHH-subgroup MB (SHH-MB), exhibited protocol-defined responses. Progression-free survival (PFS) was longer in those with SHH-MB than in those with non-SHH-MB, and prolonged disease stabilization occurred in 41% of patient cases of SHH-MB. Among those with SHH-MB, loss of heterozygosity of PTCH1 was associated with prolonged PFS, and diffuse staining of P53 was associated with reduced PFS. Whole-exome sequencing identified mutations in SHH genes downstream from SMO in four of four tissue samples from nonresponders and upstream of SMO in two of four patients with favorable responses. CONCLUSION Vismodegib exhibits activity against adult recurrent SHH-MB but not against recurrent non-SHH-MB. Inadequate accrual of pediatric patients precluded conclusions in this population. Molecular analyses support the hypothesis that SMO inhibitor activity depends on the genomic aberrations within the tumor. Such inhibitors should be advanced in SHH-MB studies; however, molecular and genomic work remains imperative to identify target populations that will truly benefit.


Cancer Research | 2013

Novel Oncogenic PDGFRA Mutations in Pediatric High-Grade Gliomas

Barbara S. Paugh; Xiaoyan Zhu; Chunxu Qu; Raelene Endersby; Alexander K. Diaz; Junyuan Zhang; Diana Carvalho; Rui M. Reis; Arzu Onar-Thomas; Alberto Broniscer; Jinghui Zhang; Chris Jones; David W. Ellison; S Baker

The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG.


Journal of Clinical Oncology | 2013

Processing Speed, Attention, and Working Memory After Treatment for Medulloblastoma: An International, Prospective, and Longitudinal Study

Shawna L. Palmer; Carol L. Armstrong; Arzu Onar-Thomas; Shengjie Wu; Dana Wallace; Melanie J. Bonner; Jane E. Schreiber; Michelle Swain; Lynn Chapieski; Donald Mabbott; Sarah Knight; Robyn Boyle; Amar Gajjar

PURPOSE The current study prospectively examined processing speed (PS), broad attention (BA), and working memory (WM) ability of patients diagnosed with medulloblastoma over a 5-year period. PATIENTS AND METHODS The study included 126 patients, ages 3 to 21 years at diagnosis, enrolled onto a collaborative protocol for medulloblastoma. Patients were treated with postsurgical risk-adapted craniospinal irradiation (n = 36 high risk [HR]; n = 90 average risk) followed by four cycles of high-dose chemotherapy with stem-cell support. Patients completed 509 neuropsychological evaluations using the Woodcock-Johnson Tests of Cognitive Abilities Third Edition (median of three observations per patient). RESULTS Linear mixed effects models revealed that younger age at diagnosis, HR classification, and higher baseline scores were significantly associated with poorer outcomes in PS. Patients treated as HR and those with higher baseline scores are estimated to have less favorable outcomes in WM and BA over time. Parent education and marital status were significantly associated with BA and WM baseline scores but not change over time. CONCLUSION Of the three key domains, PS was estimated to have the lowest scores at 5 years after diagnosis. Identifying cognitive domains most vulnerable to decline should guide researchers who are aiming to develop efficacious cognitive intervention and rehabilitation programs, thereby improving the quality of survivorship for the pediatric medulloblastoma population.


Journal of Clinical Oncology | 2010

Phase I Study of Vandetanib During and After Radiotherapy in Children With Diffuse Intrinsic Pontine Glioma

Alberto Broniscer; Justin N. Baker; Michael Tagen; Arzu Onar-Thomas; Richard J. Gilbertson; Andrew M. Davidoff; Atmaram S. Pai Panandiker; Wing Leung; Thomas K. Chin; Clinton F. Stewart; Mehmet Kocak; Christopher Rowland; Thomas E. Merchant; Sue C. Kaste; Amar Gajjar

PURPOSE To evaluate the safety, maximum-tolerated dose, pharmacokinetics, and pharmacodynamics of vandetanib, an oral vascular endothelial growth factor receptor 2 (VEGFR2) and epidermal growth factor receptor inhibitor, administered once daily during and after radiotherapy in children with newly diagnosed diffuse intrinsic pontine glioma. PATIENTS AND METHODS Radiotherapy was administered as 1.8-Gy fractions (total cumulative dose of 54 Gy). Vandetanib was administered concurrently with radiotherapy for a maximum of 2 years. Dose-limiting toxicities (DLTs) were evaluated during the first 6 weeks of therapy. Pharmacokinetic studies were obtained for all patients. Plasma angiogenic factors and VEGFR2 phosphorylation in mononuclear cells were analyzed before and during therapy. RESULTS Twenty-one patients were administered 50 (n = 3), 65 (n = 3), 85 (n = 3), 110 (n = 6), and 145 mg/m(2) (n = 6) of vandetanib. Only one patient developed DLT (grade 3 diarrhea) at dosage level 5. An expanded cohort of patients were treated at dosage levels 4 (n = 10) and 5 (n = 4); two patients developed grade 4 hypertension and posterior reversible encephalopathy syndrome while also receiving high-dose dexamethasone. Despite significant interpatient variability, exposure to vandetanib increased with higher dosage levels. The bivariable analysis of vascular endothelial growth factor (VEGF) before and during therapy showed that patients with higher levels of VEGF before therapy had a longer progression-free survival (PFS; P = .022), whereas patients with increases in VEGF during treatment had a shorter PFS (P = .0015). VEGFR2 phosphorylation was inhibited on day 8 or 29 of therapy compared with baseline (P = .039). CONCLUSION The recommended phase II dose of vandetanib in children is 145 mg/m(2) per day. Close monitoring and management of hypertension is required, particularly for patients receiving corticosteroids.


Journal of Clinical Oncology | 2010

Phase I Trial of Lapatinib in Children With Refractory CNS Malignancies: A Pediatric Brain Tumor Consortium Study

Maryam Fouladi; Clinton F. Stewart; Susan M. Blaney; Arzu Onar-Thomas; Paula Schaiquevich; Roger J. Packer; Amar Gajjar; Larry E. Kun; James M. Boyett; Richard J. Gilbertson

PURPOSE To estimate the maximum-tolerated dose, dose-limiting toxicities (DLTs), and pharmacokinetic properties of lapatinib, a selective epidermal growth factor receptor (EGFR) and ERBB2 inhibitor, in children with refractory or recurrent CNS malignancies. PATIENTS AND METHODS Lapatinib was administered orally twice daily at escalating doses starting at 300 mg/m(2) to patients who were not (stratum I) or were (stratum II) receiving steroids. Pharmacokinetic studies were performed during the first two courses. Expression of the four ERBB receptors and downstream signaling elements in tumor tissue was evaluated by immunohistochemistry. RESULTS Fifty-nine patients were enrolled (stratum I, n = 32; stratum II, n = 27). Of 29 patients evaluable for toxicity in stratum I, one experienced a DLT (diarrhea) at 520 mg/m(2) twice daily, and all three receiving 1,150 mg/m(2) twice daily experienced DLTs (one each of rash, diarrhea, and fatigue). Two of 21 patients evaluable for toxicity in stratum II experienced DLTs of rash at 900 mg/m(2) twice daily. Lapatinib dosage was related linearly to area under the [concentration-time] curve from start time to 12 hours later (AUC(0-12)) and dose-normalized maximum serum concentration and AUC values for patients in stratum II were both significantly higher (P = .001) than those for patients in stratum I. Frequent, high-level expression of activated (phosphorylated) EGFR and ERBB2 receptors and downstream signal intermediates were observed in tumors, particularly in ependymomas that displayed prolonged stable disease on lapatinib therapy. CONCLUSION Lapatinib is well tolerated in children with recurrent CNS malignancies, with rash, diarrhea, and fatigue identified as DLTs. The recommended phase II dose, regardless of steroid use, is 900 mg/m(2) twice daily.

Collaboration


Dive into the Arzu Onar-Thomas's collaboration.

Top Co-Authors

Avatar

Amar Gajjar

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Maryam Fouladi

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Clinton F. Stewart

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Alberto Broniscer

Beth Israel Medical Center

View shared research outputs
Top Co-Authors

Avatar

James M. Boyett

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Stewart Goldman

Children's Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar

Giles W. Robinson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Roger J. Packer

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jie Huang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Richard J. Gilbertson

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge