Asa Bradman
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Asa Bradman.
Environmental Health Perspectives | 2007
Brenda Eskenazi; Amy R. Marks; Asa Bradman; Kim G. Harley; Dana B. Barr; Caroline Johnson; Norma Morga; Nicholas P. Jewell
Background Organophosphate (OP) pesticides are widely used in agriculture and homes. Animal studies suggest that even moderate doses are neurodevelopmental toxicants, but there are few studies in humans. Objectives We investigated the relationship of prenatal and child OP urinary metabolite levels with children’s neurodevelopment. Methods Participating children were from a longitudinal birth cohort of primarily Latino farm-worker families in California. We measured six nonspecific dialkylphosphate (DAP) metabolites in maternal and child urine as well as metabolites specific to malathion (MDA) and chlorpyrifos (TCPy) in maternal urine. We examined their association with children’s performance at 6 (n = 396), 12 (n = 395), and 24 (n = 372) months of age on the Bayley Scales of Infant Development [Mental Development (MDI) and Psychomotor Development (PDI) Indices] and mother’s report on the Child Behavior Checklist (CBCL) (n = 356). Results Generally, pregnancy DAP levels were negatively associated with MDI, but child measures were positively associated. At 24 months of age, these associations reached statistical significance [per 10-fold increase in prenatal DAPs: β = −3.5 points; 95% confidence interval (CI), −6.6 to −0.5; child DAPs: β = 2.4 points; 95% CI, 0.5 to 4.2]. Neither prenatal nor child DAPs were associated with PDI or CBCL attention problems, but both prenatal and postnatal DAPs were associated with risk of pervasive developmental disorder [per 10-fold increase in prenatal DAPs: odds ratio (OR) = 2.3, p = 0.05; child DAPs OR = 1.7, p = 0.04]. MDA and TCPy were not associated with any outcome. Conclusions We report adverse associations of prenatal DAPs with mental development and pervasive developmental problems at 24 months of age. Results should be interpreted with caution given the observed positive relationship with postnatal DAPs.
Environmental Health Perspectives | 2004
Laura Fenster; Brenda Eskenazi; Meredith Anderson; Asa Bradman; Kim G. Harley; Hedy Hernandez; Alan Hubbard; Dana B. Barr
Although pesticide use is widespread, little is known about potential adverse health effects of in utero exposure. We investigated the effects of organophosphate pesticide exposure during pregnancy on fetal growth and gestational duration in a cohort of low-income, Latina women living in an agricultural community in the Salinas Valley, California. We measured nonspecific metabolites of organophosphate pesticides (dimethyl and diethyl phosphates) and metabolites specific to malathion (malathion dicarboxylic acid), chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphoro-thioate], and parathion (4-nitrophenol) in maternal urine collected twice during pregnancy. We also measured levels of cholinesterase in whole blood and butyryl cholinesterase in plasma in maternal and umbilical cord blood. We failed to demonstrate an adverse relationship between fetal growth and any measure of in utero organophosphate pesticide exposure. In fact, we found increases in body length and head circumference associated with some exposure measures. However, we did find decreases in gestational duration associated with two measures of in utero pesticide exposure: urinary dimethyl phosphate metabolites [βadjusted = −0.41 weeks per log10 unit increase; 95% confidence interval (CI), −0.75–−0.02; p = 0.02], which reflect exposure to dimethyl organophosphate compounds such as malathion, and umbilical cord cholinesterase (βadjusted = 0.34 weeks per unit increase; 95% CI, 0.13–0.55; p = 0.001). Shortened gestational duration was most clearly related to increasing exposure levels in the latter part of pregnancy. These associations with gestational age may be biologically plausible given that organophosphate pesticides depress cholinesterase and acetylcholine stimulates contraction of the uterus. However, despite these observed associations, the rate of preterm delivery in this population (6.4%) was lower than in a U.S. reference population.
Environmental Health Perspectives | 2011
Maryse F. Bouchard; Jonathan Chevrier; Kim G. Harley; Katherine Kogut; Michelle Vedar; Norma Calderon; Celina Trujillo; Caroline Johnson; Asa Bradman; Dana Boyd Barr; Brenda Eskenazi
Context: Organophosphate (OP) pesticides are neurotoxic at high doses. Few studies have examined whether chronic exposure at lower levels could adversely affect children’s cognitive development. Objective: We examined associations between prenatal and postnatal exposure to OP pesticides and cognitive abilities in school-age children. Methods: We conducted a birth cohort study (Center for the Health Assessment of Mothers and Children of Salinas study) among predominantly Latino farmworker families from an agricultural community in California. We assessed exposure to OP pesticides by measuring dialkyl phosphate (DAP) metabolites in urine collected during pregnancy and from children at 6 months and 1, 2, 3.5, and 5 years of age. We administered the Wechsler Intelligence Scale for Children, 4th edition, to 329 children 7 years of age. Analyses were adjusted for maternal education and intelligence, Home Observation for Measurement of the Environment score, and language of cognitive assessment. Results: Urinary DAP concentrations measured during the first and second half of pregnancy had similar relations to cognitive scores, so we used the average of concentrations measured during pregnancy in further analyses. Averaged maternal DAP concentrations were associated with poorer scores for Working Memory, Processing Speed, Verbal Comprehension, Perceptual Reasoning, and Full-Scale intelligence quotient (IQ). Children in the highest quintile of maternal DAP concentrations had an average deficit of 7.0 IQ points compared with those in the lowest quintile. However, children’s urinary DAP concentrations were not consistently associated with cognitive scores. Conclusions: Prenatal but not postnatal urinary DAP concentrations were associated with poorer intellectual development in 7-year-old children. Maternal urinary DAP concentrations in the present study were higher but nonetheless within the range of levels measured in the general U.S. population.
Environmental Health Perspectives | 2013
Brenda Eskenazi; Jonathan Chevrier; Stephen Rauch; Katherine Kogut; Kim G. Harley; Caroline Johnson; Celina Trujillo; Andreas Sjödin; Asa Bradman
background: California children’s exposures to polybrominated diphenyl ether flame retardants (PBDEs) are among the highest worldwide. PBDEs are known endocrine disruptors and neurotoxicants in animals. Objective: Here we investigate the relation of in utero and child PBDE exposure to neurobehavioral development among participants in CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas), a California birth cohort. Methods: We measured PBDEs in maternal prenatal and child serum samples and examined the association of PBDE concentrations with children’s attention, motor functioning, and cognition at 5 (n = 310) and 7 years of age (n = 323). Results: Maternal prenatal PBDE concentrations were associated with impaired attention as measured by a continuous performance task at 5 years and maternal report at 5 and 7 years of age, with poorer fine motor coordination—particularly in the nondominant—at both age points, and with decrements in Verbal and Full-Scale IQ at 7 years. PBDE concentrations in children 7 years of age were significantly or marginally associated with concurrent teacher reports of attention problems and decrements in Processing Speed, Perceptual Reasoning, Verbal Comprehension, and Full-Scale IQ. These associations were not altered by adjustment for birth weight, gestational age, or maternal thyroid hormone levels. Conclusions: Both prenatal and childhood PBDE exposures were associated with poorer attention, fine motor coordination, and cognition in the CHAMACOS cohort of school-age children. This study, the largest to date, contributes to growing evidence suggesting that PBDEs have adverse impacts on child neurobehavioral development.
Environmental Health Perspectives | 2010
Amy R. Marks; Kim G. Harley; Asa Bradman; Katherine Kogut; Dana Boyd Barr; Caroline Johnson; Norma Calderon; Brenda Eskenazi
Background Exposure to organophosphate (OP) pesticides, well-known neurotoxicants, has been associated with neurobehavioral deficits in children. Objectives We investigated whether OP exposure, as measured by urinary dialkyl phosphate (DAP) metabolites in pregnant women and their children, was associated with attention-related outcomes among Mexican-American children living in an agricultural region of California. Methods Children were assessed at ages 3.5 years (n = 331) and 5 years (n = 323). Mothers completed the Child Behavior Checklist (CBCL). We administered the NEPSY-II visual attention subtest to children at 3.5 years and Conners’ Kiddie Continuous Performance Test (K-CPT) at 5 years. The K-CPT yielded a standardized attention deficit/hyperactivity disorder (ADHD) Confidence Index score. Psychometricians scored behavior of the 5-year-olds during testing using the Hillside Behavior Rating Scale. Results Prenatal DAPs (nanomoles per liter) were nonsignificantly associated with maternal report of attention problems and ADHD at age 3.5 years but were significantly related at age 5 years [CBCL attention problems: β = 0.7 points; 95% confidence interval (CI), 0.2–1.2; ADHD: β = 1.3; 95% CI, 0.4–2.1]. Prenatal DAPs were associated with scores on the K-CPT ADHD Confidence Index > 70th percentile [odds ratio (OR) = 5.1; 95% CI, 1.7–15.7] and with a composite ADHD indicator of the various measures (OR = 3.5; 95% CI, 1.1–10.7). Some outcomes exhibited evidence of effect modification by sex, with associations found only among boys. There was also limited evidence of associations between child DAPs and attention. Conclusions In utero DAPs and, to a lesser extent, postnatal DAPs were associated adversely with attention as assessed by maternal report, psychometrician observation, and direct assessment. These associations were somewhat stronger at 5 years than at 3.5 years and were stronger in boys.
Environmental Health Perspectives | 2010
Kim G. Harley; Amy R. Marks; Jonathan Chevrier; Asa Bradman; Andreas Sjödin; Brenda Eskenazi
Background Exposure to polybrominated diphenyl ether (PBDE) flame retardants is widespread, with 97% of Americans having detectable levels. Although PBDEs have been associated with reproductive and hormonal effects in animals, no human studies have examined their association with fertility. Objectives This study was designed to determine whether maternal concentrations of PBDEs in serum collected during pregnancy are associated with time to pregnancy and menstrual cycle characteristics. Methods Pregnant women (n = 223) living in a low-income, predominantly Mexican-immigrant community in California were interviewed to determine how many months they took to become pregnant. Blood samples were collected and analyzed for PBDEs. PBDE concentrations were lipid adjusted and log10 transformed. Analyses were limited to PBDE congeners detected in > 75% of the population (BDEs 47, 99, 100, 153). Cox proportional hazards models modified for discrete time were used to obtain fecundability odds ratios (fORs) for the association of PBDEs and time to pregnancy. Results We detected all four congeners in > 97% of women. Increasing levels of BDEs 47, 99, 100, 153 and the sum of these four congeners were all associated with longer time to pregnancy. We observed significantly reduced fORs for BDE-100 [adjusted fOR = 0.6; 95% confidence interval (CI), 0.4–0.9], BDE-153 (adjusted fOR = 0.5; 95% CI, 0.3–0.8), and the sum of the four congeners (adjusted fOR = 0.7; 95% CI, 0.5–1.0). PBDEs were not associated with menstrual cycle characteristics. Conclusions We found significant decreases in fecundability associated with PBDE exposure in women. Future studies are needed to replicate and confirm this finding.
Basic & Clinical Pharmacology & Toxicology | 2008
Brenda Eskenazi; Lisa G. Rosas; Amy R. Marks; Asa Bradman; Kim G. Harley; Nina Holland; Caroline Johnson; Laura Fenster; Dana B. Barr
Organochlorine pesticides are used in some countries for malaria control and organophosphate pesticides are widely used in agriculture and in homes. Previous literature documents childrens exposure to these chemicals both in utero and during development. Animal studies suggest that many of these chemicals are neurodevelopmental toxicants even in moderate doses, but there are few studies in human beings. Associations of childrens pesticide exposure with neurodevelopment from studies being conducted worldwide are summarized. In addition, we present the work of the CHAMACOS study, a longitudinal birth cohort study of Mexican-American children living in the Salinas Valley of California. In this study, we investigated the relationship of childrens neurodevelopment with maternal dichlorodiphenyltrichloroethane and dichlorodiphenyldichloroethylene serum levels, as well as prenatal and child organophosphate urinary metabolite levels. We have examined the association with childrens performance on the Brazelton Neonatal Assessment Scales and at 6, 12 and 24 months on the Bayley Scales of Infant Development (mental development and psychomotor development) and mothers report on the Child Behaviour Checklist. We observed a negative association of prenatal dichlorodiphenyltrichloroethane exposure and child mental development. We also observed adverse associations of prenatal but not postnatal organophosphate pesticide exposure with mental development and pervasive developmental disorder at 24 months.
Environmental Health Perspectives | 2005
Asa Bradman; Brenda Eskenazi; Dana B. Barr; Roberto Bravo; Rosemary Castorina; Jonathan Chevrier; Katherine Kogut; Martha Harnly; Thomas E. McKone
Little information has been published about pesticide exposures experienced by pregnant women. We measured six dialkyl phosphate (DAP) urinary metabolites of organophosphate (OP) pesticides in 600 pregnant, low-income women living in the Salinas Valley, California, an agricultural area. A total of 28% were employed as farm fieldworkers during pregnancy, and 81% had at least one household member who worked in agriculture. Samples were collected twice during pregnancy (mean = 13 and 26 weeks’ gestation, respectively) and just after delivery (mean = 9 days). As in other studies, dimethyldithiophosphate levels were higher than those of other urinary OP metabolites. Total DAP metabolite levels in samples collected after delivery were higher than in samples collected during pregnancy. Median metabolite levels at the first and second prenatal sampling points and at the postpartum collection were 102.8, 106.8, and 227.2 nmol/L, respectively. Both prenatal and postpartum metabolite levels were higher in these Salinas Valley women than in a sample of women of childbearing age in the general U.S. population (National Health and Nutrition Examination Survey), although the deviation from U.S. reference levels was most pronounced after delivery. Higher DAP metabolite levels in the immediate postpartum period may have implications for estimating dose during pregnancy and for exposure during lactation.
Journal of Exposure Science and Environmental Epidemiology | 2007
Asa Bradman; Donald A. Whitaker; Lesliam Quirós; Rosemary Castorina; Birgit Claus Henn; Marcia Nishioka; Jeffrey N. Morgan; Dana B. Barr; Martha Harnly; Judith A. Brisbin; Linda Sheldon; Thomas E. McKone; Brenda Eskenazi
In support of planning efforts for the National Childrens Study, we conducted a study to test field methods for characterizing pesticide exposures to 20 farmworker children aged 5–27 months old living in the Salinas Valley of Monterey County, California. We tested methods for collecting house dust, indoor and outdoor air, dislodgeable residues from surfaces and toys, residues on clothing (sock and union suits), food, as well as spot and overnight diaper urine samples. We measured 29 common agricultural and home use pesticides in multiple exposure media samples. A subset of organophosphorus (OP), organochlorine (OC) and pyrethroid pesticides were measured in food. We also analyzed urine samples for OP pesticide metabolites. Finally, we administered four field-based exposure assessment instruments: a questionnaire; food diary; home inspection; and a self-administered child activity timeline. Pesticides were detected more frequently in house dust, surface wipes, and clothing than other media, with chlorpyrifos, diazinon, chlorthal-dimethyl, and cis- and trans-permethrin detected in 90% to 100% of samples. Levels of four of these five pesticides were positively correlated among the house dust, sock, and union suit samples (Spearmans ρ=0.18–0.76). Pesticide loading on socks and union suits was higher for the group of 10 toddlers compared to the 10 younger crawling children. Several OP pesticides, as well as 4,4′-DDE, atrazine, and dieldrin were detected in the food samples. The child activity timeline, a novel, low-literacy instrument based on pictures, was successfully used by our participants. Future uses of these data include the development of pesticide exposure models and risk assessment.
Journal of Exposure Science and Environmental Epidemiology | 2004
Roberto Bravo; Lisa M. Caltabiano; Gayanga Weerasekera; Ralph D. Whitehead; Carolina Fernandez; Larry L. Needham; Asa Bradman; Dana B. Barr
Urinary dialkylphosphate (DAP) metabolites have been used to estimate human exposure to organophosphorus pesticides. We developed a method for quantifying the six DAP urinary metabolites of at least 28 organophosphorus pesticides using lyophilization and chemical derivatization followed by analysis using isotope-dilution gas chromatography–tandem mass spectrometry (GC–MS/MS). Urine samples were spiked with stable isotope analogues of the DAPs and the water was removed from the samples using a lyophilizer. The dried residue was dissolved in acetonitrile and diethyl ether, and the DAPs were chemically derivatized to their respective chloropropyl phosphate esters. The chloropropyl phosphate esters were concentrated, and analyzed using GC–MS/MS. The limits of detection of the method were in the low μg/l (parts per billion) to mid pg/ml range (parts per trillion) with coefficients of variation of 7–14%. The use of stable isotope analogues as internal standards for each of these metabolites allows for sample-specific adjustment for recovery and thus permits a high degree of accuracy and precision. Use of this method with approximately 1100 urine samples collected from pregnant women and children indicate that the low limits of detection allow this method to be used in general population studies.