Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Åsa Petersén is active.

Publication


Featured researches published by Åsa Petersén.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors

David Gisselsson Nord; Tord Jonson; Åsa Petersén; Bodil Strömbeck; Paola Dal Cin; Mattias Höglund; Felix Mitelman; Fredrik Mertens; Nils Mandahl

Although mechanisms for chromosomal instability in tumors have been described in animal and in vitro models, little is known about these processes in man. To explore cytogenetic evolution in human tumors, chromosomal breakpoint profiles were constructed for 102 pancreatic carcinomas and 140 osteosarcomas, two tumor types characterized by extensive genomic instability. Cases with few chromosomal alterations showed a preferential clustering of breakpoints to the terminal bands, whereas tumors with many changes showed primarily interstitial and centromeric breakpoints. The terminal breakpoint frequency was negatively correlated to telomeric TTAGGG repeat length, and fluorescence in situ hybridization with telomeric TTAGGG probes consistently indicated shortened telomeres and >10% of chromosome ends lacking telomeric signals. Because telomeric dysfunction may lead to formation of unstable ring and dicentric chromosomes, mitotic figures were also evaluated. Anaphase bridges were found in all cases, and fluorescence in situ hybridization demonstrated extensive structural rearrangements of chromosomes, with terminal transferase detection showing fragmented DNA in 5–20% of interphase cells. Less than 2% of cells showed evidence of necrosis or apoptosis, and telomerase was expressed in the majority of cases. Telomeric dysfunction may thus trigger chromosomal fragmentation through persistent bridge-breakage events in pancreatic carcinomas and osteosarcomas, leading to a continuous reorganization of the tumor genome. Telomerase expression is not sufficient for completely stabilizing the chromosome complement but may be crucial for preventing complete genomic deterioration and maintaining cellular survival.


Cell Transplantation | 2000

Improving the survival of grafted dopaminergic neurons: a review over current approaches

Patrik Brundin; Jenny Karlsson; Mia Emgård-Mattson; Gabriele S. Kaminski Schierle; Oskar Hansson; Åsa Petersén; Roger F. Castilho

Neural transplantation is developing into a therapeutic alternative in Parkinsons disease. A major limiting factor is that only 3–20% of grafted dopamine neurons survive the procedure. Recent advances regarding how and when the neurons die indicate that events preceding actual tissue implantation and during the first week thereafter are crucial, and that apoptosis plays a pivotal role. Triggers that may initiate neuronal death in grafts include donor tissue hypoxia and hypoglycemia, mechanical trauma, free radicals, growth factor deprivation, and excessive extracellular concentrations of excitatory amino acids in the host brain. Four distinct phases during grafting that can involve cell death have been identified: retrieval of the embryo; dissection and preparation of the donor tissue; implantation procedure followed by the immediate period after graft injection; and later stages of graft maturation. During these phases, cell death processes involving free radicals and caspase activation (leading to apoptosis) may be triggered, possibly involving an increase in intracellular calcium. We review different approaches that reduce cell death and increase survival of grafted neurons, typically by a factor of 2–4. For example, changes in transplantation procedure such as improved media and implantation technique can be beneficial. Calcium channel antagonists such as nimodipine and flunarizine improve nigral graft survival. Agents that counteract oxidative stress and its consequences, such as superoxide dismutase overexpression, and lazaroids can significantly increase the survival of transplanted dopamine neurons. Also, the inhibition of apoptosis by a caspase inhibitor has marked positive effects. Finally, basic fibroblast growth factor and members of the transforming growth factor-beta superfamily, such as glial cell line-derived neurotrophic factor, significantly improve the outcome of nigral transplants. These recent advances provide hope for improved survival of transplanted neurons in patients with Parkinsons disease, reducing the need for human embryonic donor tissue and increasing the likelihood of a successful outcome.


Experimental Neurology | 1999

Recent advances on the pathogenesis of Huntington's disease.

Åsa Petersén; Kevin Mani; Patrik Brundin

We review recent advances regarding the pathogenesis of Huntingtons disease (HD). This genetic neurodegenerative disorder is caused by an expanded CAG repeat in a gene coding for a protein, with unknown function, called huntingtin. There is selective death of striatal and cortical neurons. Both in patients and a transgenic mouse model of the disease, neuronal intranuclear inclusions, immunoreactive for huntingtin and ubiquitin, develop. Huntingtin interacts with the proteins GAPDH, HAP-1, HIP1, HIP2, and calmodulin, and a mutant huntingtin is specifically cleaved by the proapoptotic enzyme caspase 3. The pathogenetic mechanism is not known, but it is presumed that there is a toxic gain of function of the mutant huntingtin. Circumstantial evidence suggests that excitotoxicity, oxidative stress, impaired energy metabolism, and apoptosis play a role.


Neurobiology of Disease | 2005

Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice

Joana M. Gil; Paul Mohapel; Inês M. Araújo; Natalija Popovic; Jia-Yi Li; Patrik Brundin; Åsa Petersén

We investigated whether cell proliferation and neurogenesis are altered in R6/2 transgenic Huntingtons disease mice. Using bromodeoxyuridine (BrdU), we found a progressive decrease in the number of proliferating cells in the dentate gyrus of R6/2 mice. This reduction was detected in pre-symptomatic mice, and by 11.5 weeks, R6/2 mice had 66% fewer newly born cells in the hippocampus. The results were confirmed by immunohistochemistry for the cell cycle markers Ki-67 and proliferating cell nuclear antigen (PCNA). We did not observe changes in cell proliferation in the R6/2 subventricular zone, indicating that the decrease in cell proliferation is specific for the hippocampus. This decrease corresponded to a reduction in actual hippocampal neurogenesis as assessed by double immunostaining for BrdU and the neuronal marker neuronal nuclei (NeuN) and by immunohistochemistry for the neuroblast marker doublecortin. Reduced hippocampal neurogenesis may be a novel neuropathological feature in R6/2 mice that could be assessed when evaluating potential therapies.


European Journal of Neuroscience | 2006

Hypothalamic-endocrine aspects in Huntington's disease

Åsa Petersén; Maria Björkqvist

Huntingtons disease (HD) is a hereditary and fatal disorder caused by an expanded CAG triplet repeat in the HD gene, resulting in a mutant form of the protein huntingtin. Wild‐type and mutant huntingtin are expressed in most tissues of the body but the normal function of huntingtin is not fully known. In HD, the neuropathology is characterized by intranuclear and cytoplasmic inclusions of huntingtin aggregates, and cell death primarily in striatum and cerebral cortex. However, hypothalamic atrophy occurs at early stages of HD with loss of orexin‐ and somatostatin‐containing cell populations. Several symptoms of HD such as sleep disturbances, alterations in circadian rhythm, and weight loss may be due to hypothalamic dysfunction. Endocrine changes including increased cortisol levels, reduced testosterone levels and increased prevalence of diabetes are found in HD patients. In HD mice, alterations in the hypothalamic–pituitary–adrenal axis occurs as well as pancreatic β‐cell and adipocyte dysfunction. Increasing evidence points towards important pathology of the hypothalamus and the endocrine system in HD. As many neuroendocrine factors are secreted into the cerebrospinal fluid, blood and urine, it is possible that their levels may reflect the disease state in the central nervous system. Investigating neuroendocrine changes in HD opens up the possibility of finding biomarkers to evaluate future therapies for HD, as well as of identifying novel targets for therapeutic interventions.


European Neuropsychopharmacology | 2007

Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder

Lena Brundin; Maria Björkqvist; Åsa Petersén; Lil Träskman-Bendz

Orexins are neuropeptides selectively expressed in a small number of neurons in the lateral-posterior hypothalamus. We measured orexin-A in the cerebrospinal fluid (CSF) of 66 patients with major depressive disorder (MDD), dysthymia and adjustment disorder after a suicide attempt. Blood samples confirmed that the patients were free from antidepressive and neuroleptic medication at the time of the lumbar punctures. CSF levels of orexin-A were significantly lower in patients with MDD than in patients with adjustment disorder and dysthymia. Orexin correlated significantly with CSF levels of somatostatin, delta sleep inducing peptide-like immunoreactivity (DSIP-LI) and corticotrophin releasing factor (CRF), but not with leptin or vasopressin. Plasma levels of thyroid-stimulating hormone (TSH) were not reduced in MDD patients, and did not correlate with CSF-orexin. Our results suggest that suicidal patients with MDD have distinct neurobiological features, involving compromised levels of hypothalamic peptides regulating the state of arousal.


Brain | 2008

Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin

Mahmoud A. Pouladi; Rona K. Graham; Joanna M. Karasinska; Yuanyun Xie; Rachelle Dar Santos; Åsa Petersén; Michael R. Hayden

Huntington disease is a neurodegenerative disorder caused by an expanded CAG repeat in the Huntington disease gene. The symptomatic phase of the disease is defined by the onset of motor symptoms. However, psychiatric disturbances, including depression, are common features of Huntington disease and recent studies indicate that depression can occur long before the manifestation of motor symptoms. The aetiology of depression in Huntington disease is not fully understood and psychosocial factors such as the knowledge of carrying a mutation for an incurable disease or adverse social circumstances may contribute to its presentation. Due to the difficulties in discriminating between social and biological factors as contributors to depression in clinical Huntington disease, we chose to assess whether a model for Huntington disease not subject to environmental stressors, namely the YAC mouse model of Huntington disease, displays a depressive phenotype. Indeed, the YAC transgenic mice recapitulate the early depressive phenotype of Huntington disease as assessed by the Porsolt forced swim test as well as the sucrose intake test as a measure of anhedonia. The YAC model mirrors clinical Huntington disease in that there were no effects of CAG repeat length or disease duration on the depressive phenotype. The depressive phenotype was completely rescued in YAC transgenic animals expressing a variant of mutant huntingtin that is resistant to cleavage at amino acid 586 suggesting that therapies aimed towards inhibition of huntingtin cleavage are also likely to have beneficial effects on this aspect of the disease. In conclusion, our study provides strong support for a primary neurobiological basis for depression in Huntington disease.


Annals of Neurology | 2011

Eating and Hypothalamus Changes in Behavioral-Variant Frontotemporal Dementia

Olivier Piguet; Åsa Petersén; Bonnie Y. K. Lam; Sanaz Gabery; Karen Murphy; John R. Hodges; Glenda M. Halliday

Behavioral‐variant frontotemporal dementia (bvFTD) is a progressive neurodegenerative brain disorder, clinically characterized by changes in cognition, personality, and behavior. Marked disturbances in eating behavior, such as overeating and preference for sweet foods, are also commonly reported. The hypothalamus plays a critical role in feeding regulation, yet the relation between pathology in this region and eating behavior in FTD is unknown. This study aimed to address this issue using 2 complementary approaches.


Neurobiology of Disease | 2002

Evidence for Dysfunction of the Nigrostriatal Pathway in the R6/1 Line of Transgenic Huntington's Disease Mice

Åsa Petersén; Zoe Puschban; Julie Lotharius; B Nicniocaill; P Wiekop; William T. O'Connor; Patrik Brundin

The present multidisciplinary study examined nigrostriatal dopamine and striatal amino acid transmission in the R6/1 line of transgenic Huntingtons disease (HD) mice expressing exon 1 of the HD gene with 115 CAG repeats. Although the number of tyrosine hydroxylase-positive neurons was not reduced and nigrostriatal connectivity remained intact in 16-week-old R6/1 mice, the size of tyrosine hydroxylase-positive neurons in the substantia nigra was reduced by 15%, and approximately 30% of these cells exhibited aggregated huntingtin. In addition, using in vivo microdialysis, we found that basal extracellular striatal dopamine levels were reduced by 70% in R6/1 mice compared to their wild-type littermates. Intrastriatal perfusion with malonate in R6/1 mice resulted in a short-lasting, attenuated increase in local dopamine release compared to wild-type mice. Furthermore, the size of the malonate-induced striatal lesion was 80% smaller in these animals. Taken together, these findings suggest that a functional deficit in nigrostriatal dopamine transmission may contribute to the behavioral phenotype and the resistance to malonate-induced neurotoxicity characteristic of R6/1 HD mice.


Brain Research | 2000

Oxidative stress, mitochondrial permeability transition and activation of caspases in calcium ionophore A23187-induced death of cultured striatal neurons.

Åsa Petersén; Roger F. Castilho; Oskar Hansson; Tadeusz Wieloch; Patrik Brundin

Disruption of intracellular calcium homeostasis is thought to play a role in neurodegenerative disorders such as Huntingtons disease (HD). To study different aspects of putative pathogenic mechanisms in HD, we aimed to establish an in vitro model of calcium-induced toxicity in striatal neurons. The calcium ionophore A23187 induced a concentration- and time-dependent cell death in cultures of embryonic striatal neurons, causing both apoptosis and necrosis. Cell death was significantly reduced by the cell-permeant antioxidant manganese(III)tetrakis(4-benzoic acid) porphyrin (MnTBAP). Cyclosporin A and its analogue N-MeVal-4-cyclosporin also reduced the incidence of cell death, suggesting the participation of mitochondrial permeability transition in this process. Furthermore, addition of either of two types of caspase inhibitors, Ac-YVAD-CHO (acetyl-Tyr-Val-Ala-Asp-aldehyde) and Ac-DEVD-CHO (acetyl-Asp-Glu-Val-Asp-aldehyde), to the striatal cells blocked A23187-induced striatal cell death in a concentration-dependent manner. These results suggest that oxidative stress, opening of the mitochondrial permeability transition pore and activation of caspases are important steps in A23187-induced cell death.

Collaboration


Dive into the Åsa Petersén's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge