Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Åsa Sivertsson is active.

Publication


Featured researches published by Åsa Sivertsson.


Science | 2015

Tissue-based map of the human proteome

Mathias Uhlén; Linn Fagerberg; Bjoern M. Hallström; Cecilia Lindskog; Per Oksvold; Adil Mardinoglu; Åsa Sivertsson; Caroline Kampf; Evelina Sjöstedt; Anna Asplund; IngMarie Olsson; Karolina Edlund; Emma Lundberg; Sanjay Navani; Cristina Al-Khalili Szigyarto; Jacob Odeberg; Dijana Djureinovic; Jenny Ottosson Takanen; Sophia Hober; Tove Alm; Per-Henrik Edqvist; Holger Berling; Hanna Tegel; Jan Mulder; Johan Rockberg; Peter Nilsson; Jochen M. Schwenk; Marica Hamsten; Kalle von Feilitzen; Mattias Forsberg

Protein expression across human tissues Sequencing the human genome gave new insights into human biology and disease. However, the ultimate goal is to understand the dynamic expression of each of the approximately 20,000 protein-coding genes and the function of each protein. Uhlén et al. now present a map of protein expression across 32 human tissues. They not only measured expression at an RNA level, but also used antibody profiling to precisely localize the corresponding proteins. An interactive website allows exploration of expression patterns across the human body. Science, this issue 10.1126/science.1260419 Transcriptomics and immunohistochemistry map protein expression across 32 human tissues. INTRODUCTION Resolving the molecular details of proteome variation in the different tissues and organs of the human body would greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on quantitative transcriptomics on a tissue and organ level combined with protein profiling using microarray-based immunohistochemistry to achieve spatial localization of proteins down to the single-cell level. We provide a global analysis of the secreted and membrane proteins, as well as an analysis of the expression profiles for all proteins targeted by pharmaceutical drugs and proteins implicated in cancer. RATIONALE We have used an integrative omics approach to study the spatial human proteome. Samples representing all major tissues and organs (n = 44) in the human body have been analyzed based on 24,028 antibodies corresponding to 16,975 protein-encoding genes, complemented with RNA-sequencing data for 32 of the tissues. The antibodies have been used to produce more than 13 million tissue-based immunohistochemistry images, each annotated by pathologists for all sampled tissues. To facilitate integration with other biological resources, all data are available for download and cross-referencing. RESULTS We report a genome-wide analysis of the tissue specificity of RNA and protein expression covering more than 90% of the putative protein-coding genes, complemented with analyses of various subproteomes, such as predicted secreted proteins (n = 3171) and membrane-bound proteins (n = 5570). The analysis shows that almost half of the genes are expressed in all analyzed tissues, which suggests that the gene products are needed in all cells to maintain “housekeeping” functions such as cell growth, energy generation, and basic metabolism. Furthermore, there is enrichment in metabolism among these genes, as 60% of all metabolic enzymes are expressed in all analyzed tissues. The largest number of tissue-enriched genes is found in the testis, followed by the brain and the liver. Analysis of the 618 proteins targeted by clinically approved drugs unexpectedly showed that 30% are expressed in all analyzed tissues. An analysis of metabolic activity based on genome-scale metabolic models (GEMS) revealed liver as the most metabolically active tissue, followed by adipose tissue and skeletal muscle. CONCLUSIONS A freely available interactive resource is presented as part of the Human Protein Atlas portal (www.proteinatlas.org), offering the possibility to explore the tissue-elevated proteomes in tissues and organs and to analyze tissue profiles for specific protein classes. Comprehensive lists of proteins expressed at elevated levels in the different tissues have been compiled to provide a spatial context with localization of the proteins in the subcompartments of each tissue and organ down to the single-cell level. The human tissue–enriched proteins. All tissue-enriched proteins are shown for 13 representative tissues or groups of tissues, stratified according to their predicted subcellular localization. Enriched proteins are mainly intracellular in testis, mainly membrane bound in brain and kidney, and mainly secreted in pancreas and liver. Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray–based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.


Molecular & Cellular Proteomics | 2005

A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics

Mathias Uhlén; Erik Björling; Charlotta Agaton; Cristina Al-Khalili Szigyarto; Bahram Amini; Elisabet Andersen; Ann-Catrin Andersson; Pia Angelidou; Anna Asplund; Caroline Asplund; Lisa Berglund; Kristina Bergström; Harry Brumer; Dijana Cerjan; Marica Ekström; Adila El-Obeid; Cecilia Eriksson; Linn Fagerberg; Ronny Falk; Jenny Fall; Mattias Forsberg; Marcus Gry Björklund; Kristoffer Gumbel; Asif Halimi; Inga Hallin; Carl Hamsten; Marianne Hansson; My Hedhammar; Görel Hercules; Caroline Kampf

Antibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we report a new publicly available database containing, in the first version, ∼400,000 high resolution images corresponding to more than 700 antibodies toward human proteins. Each image has been annotated by a certified pathologist to provide a knowledge base for functional studies and to allow queries about protein profiles in normal and disease tissues. Our results suggest it should be possible to extend this analysis to the majority of all human proteins thus providing a valuable tool for medical and biological research.


Molecular & Cellular Proteomics | 2008

A Genecentric Human Protein Atlas for Expression Profiles Based on Antibodies

Lisa Berglund; Erik Björling; Per Oksvold; Linn Fagerberg; Anna Asplund; Cristina Al-Khalili Szigyarto; Anja Persson; Jenny Ottosson; Henrik Wernérus; Peter Nilsson; Emma Lundberg; Åsa Sivertsson; Sanjay Navani; Kenneth Wester; Caroline Kampf; Sophia Hober; Fredrik Pontén; Mathias Uhlén

An attractive path forward in proteomics is to experimentally annotate the human protein complement of the genome in a genecentric manner. Using antibodies, it might be possible to design protein-specific probes for a representative protein from every protein-coding gene and to subsequently use the antibodies for systematical analysis of cellular distribution and subcellular localization of proteins in normal and disease tissues. A new version (4.0) of the Human Protein Atlas has been developed in a genecentric manner with the inclusion of all human genes and splice variants predicted from genome efforts together with a visualization of each protein with characteristics such as predicted membrane regions, signal peptide, and protein domains and new plots showing the uniqueness (sequence similarity) of every fraction of each protein toward all other human proteins. The new version is based on tissue profiles generated from 6120 antibodies with more than five million immunohistochemistry-based images covering 5067 human genes, corresponding to ∼25% of the human genome. Version 4.0 includes a putative list of members in various protein classes, both functional classes, such as kinases, transcription factors, G-protein-coupled receptors, etc., and project-related classes, such as candidate genes for cancer or cardiovascular diseases. The exact antigen sequence for the internally generated antibodies has also been released together with a visualization of the application-specific validation performed for each antibody, including a protein array assay, Western blot analysis, immunohistochemistry, and, for a large fraction, immunofluorescence-based confocal microscopy. New search functionalities have been added to allow complex queries regarding protein expression profiles, protein classes, and chromosome location. The new version of the protein atlas thus is a resource for many areas of biomedical research, including protein science and biomarker discovery.


Molecular & Cellular Proteomics | 2014

Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics.

Linn Fagerberg; Björn M. Hallström; Per Oksvold; Caroline Kampf; Dijana Djureinovic; Jacob Odeberg; Masato Habuka; Simin Tahmasebpoor; Angelika Danielsson; Karolina Edlund; Anna Asplund; Evelina Sjöstedt; Emma Lundberg; Cristina Al-Khalili Szigyarto; Marie Skogs; Jenny Ottosson Takanen; Holger Berling; Hanna Tegel; Jan Mulder; Peter Nilsson; Jochen M. Schwenk; Cecilia Lindskog; Frida Danielsson; Adil Mardinoglu; Åsa Sivertsson; Kalle von Feilitzen; Mattias Forsberg; Martin Zwahlen; IngMarie Olsson; Sanjay Navani

Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.


Journal of Proteome Research | 2013

Contribution of Antibody-based Protein Profiling to the Human Chromosome-centric Proteome Project (C-HPP)

Linn Fagerberg; Per Oksvold; Marie Skogs; Cajsa Älgenäs; Emma Lundberg; Fredrik Pontén; Åsa Sivertsson; Jacob Odeberg; Daniel Klevebring; Caroline Kampf; Anna Asplund; Evelina Sjöstedt; Cristina Al-Khalili Szigyarto; Per-Henrik Edqvist; IngMarie Olsson; Urban Rydberg; Paul Hudson; Jenny Ottosson Takanen; Holger Berling; Lisa Björling; Hanna Tegel; Johan Rockberg; Peter Nilsson; Sanjay Navani; Karin Jirström; Jan Mulder; Jochen M. Schwenk; Martin Zwahlen; Sophia Hober; Mattias Forsberg

A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas ( www.proteinatlas.org ).


Proteomics | 2008

A whole‐genome bioinformatics approach to selection of antigens for systematic antibody generation

Lisa Berglund; Erik Björling; Kalle Jonasson; Johan Rockberg; Linn Fagerberg; Cristina Al-Khalili Szigyarto; Åsa Sivertsson; Mathias Uhlén

Here, we present an antigen selection strategy based on a whole‐genome bioinformatics approach, which is facilitated by an interactive visualization tool displaying protein features from both public resources and in‐house generated data. The web‐based bioinformatics platform has been designed for selection of multiple, non‐overlapping recombinant protein epitope signature tags by display of predicted information relevant for antigens, including domain‐ and epitope sized sequence similarities to other proteins, transmembrane regions and signal peptides. The visualization tool also displays shared and exclusive protein regions for genes with multiple splice variants. A genome‐wide analysis demonstrates that antigens for approximately 80% of the human protein‐coding genes can be selected with this strategy.


Experimental Dermatology | 2004

Mutation spectra of epidermal p53 clones adjacent to basal cell carcinoma and squamous cell carcinoma

Helena Bäckvall; Sara Strömberg; Anna C. Gustafsson; Anna Asplund; Åsa Sivertsson; Joakim Lundeberg; Fredrik Pontén

Abstract:  Foci of normal keratinocytes overexpressing p53 protein are frequently found in normal human skin. Such epidermal p53 clones are common in chronically sun‐exposed skin and have been suggested to play a role in skin cancer development. In the present study, we have analyzed the prevalence of p53 mutations in epidermal p53 clones from normal skin surrounding basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Using laser‐assisted microdissection, 37 epidermal p53 clones adjacent to BCC (21) and SCC (16) were collected. Genetic analysis was performed using a multiplex/nested polymerase chain reaction followed by direct DNA sequencing of p53 exons 2–11. In total, 21 of 37 analyzed p53 clones consisted of p53‐mutated keratinocytes. The identified mutations were located in p53 exons 4–8, corresponding to the sequence‐specific DNA‐binding domain. All mutations were missense, and 78% displayed a typical ultraviolet signature. The frequency of p53 mutations was similar in skin adjacent to BCC compared to SCC. The presented data confirm and extend previous knowledge on the genetic background of epidermal p53 clones. The mutation spectra found in epidermal p53 clones resemble that of non‐melanoma skin cancer. Approximately, 40% of the epidermal p53 clones lacked an underlying p53 mutation, suggesting that other genetic events in genes up‐ or downstream of the p53 gene can generate foci of normal keratinocytes overexpressing p53 protein.


Molecular & Cellular Proteomics | 2012

Antibody-based Protein Profiling of the Human Chromosome 21

Mathias Uhlén; Per Oksvold; Cajsa Älgenäs; Carl Hamsten; Linn Fagerberg; Daniel Klevebring; Emma Lundberg; Jacob Odeberg; Fredrik Pontén; Tadashi Kondo; Åsa Sivertsson

The Human Proteome Project has been proposed to create a knowledge-based resource based on a systematical mapping of all human proteins, chromosome by chromosome, in a gene-centric manner. With this background, we here describe the systematic analysis of chromosome 21 using an antibody-based approach for protein profiling using both confocal microscopy and immunohistochemistry, complemented with transcript profiling using next generation sequencing data. We also describe a new approach for protein isoform analysis using a combination of antibody-based probing and isoelectric focusing. The analysis has identified several genes on chromosome 21 with no previous evidence on the protein level, and the isoform analysis indicates that a large fraction of human proteins have multiple isoforms. A chromosome-wide matrix is presented with status for all chromosome 21 genes regarding subcellular localization, tissue distribution, and molecular characterization of the corresponding proteins. The path to generate a chromosome-specific resource, including integrated data from complementary assay platforms, such as mass spectrometry and gene tagging analysis, is discussed.


New Biotechnology | 2012

Validation of affinity reagents using antigen microarrays

Ronald Sjöberg; Mårten Sundberg; Anna Gundberg; Åsa Sivertsson; Jochen M. Schwenk; Mathias Uhlén; Peter Nilsson

There is a need for standardised validation of affinity reagents to determine their binding selectivity and specificity. This is of particular importance for systematic efforts that aim to cover the human proteome with different types of binding reagents. One such international program is the SH2-consortium, which was formed to generate a complete set of renewable affinity reagents to the SH2-domain containing human proteins. Here, we describe a microarray strategy to validate various affinity reagents, such as recombinant single-chain antibodies, mouse monoclonal antibodies and antigen-purified polyclonal antibodies using a highly multiplexed approach. An SH2-specific antigen microarray was designed and generated, containing more than 6000 spots displayed by 14 identical subarrays each with 406 antigens, where 105 of them represented SH2-domain containing proteins. Approximately 400 different affinity reagents of various types were analysed on these antigen microarrays carrying antigens of different types. The microarrays revealed not only very detailed specificity profiles for all the binders, but also showed that overlapping target sequences of spotted antigens were detected by off-target interactions. The presented study illustrates the feasibility of using antigen microarrays for integrative, high-throughput validation of various types of binders and antigens.


PLOS ONE | 2014

The kidney transcriptome and proteome defined by transcriptomics and antibody-based profiling.

Masato Habuka; Linn Fagerberg; Björn M. Hallström; Caroline Kampf; Karolina Edlund; Åsa Sivertsson; Tadashi Yamamoto; Fredrik Pontén; Mathias Uhlén; Jacob Odeberg

To understand renal functions and disease, it is important to define the molecular constituents of the various compartments of the kidney. Here, we used comparative transcriptomic analysis of all major organs and tissues in the human body, in combination with kidney tissue micro array based immunohistochemistry, to generate a comprehensive description of the kidney-specific transcriptome and proteome. A special emphasis was placed on the identification of genes and proteins that were elevated in specific kidney subcompartments. Our analysis identified close to 400 genes that had elevated expression in the kidney, as compared to the other analysed tissues, and these were further subdivided, depending on expression levels, into tissue enriched, group enriched or tissue enhanced. Immunohistochemistry allowed us to identify proteins with distinct localisation to the glomeruli (n = 11), proximal tubules (n = 120), distal tubules (n = 9) or collecting ducts (n = 8). Among the identified kidney elevated transcripts, we found several proteins not previously characterised or identified as elevated in kidney. This description of the kidney specific transcriptome and proteome provides a resource for basic and clinical research to facilitate studies to understand kidney biology and disease.

Collaboration


Dive into the Åsa Sivertsson's collaboration.

Top Co-Authors

Avatar

Mathias Uhlén

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Linn Fagerberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Lundberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Per Oksvold

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Nilsson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sophia Hober

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hanna Tegel

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge