Åsa Tivesten
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Åsa Tivesten.
Journal of Bone and Mineral Research | 2009
Jenny M. Kindblom; Claes Ohlsson; Östen Ljunggren; Magnus Karlsson; Åsa Tivesten; Ulf Smith; Dan Mellström
The osteoblast‐derived protein osteocalcin has recently been shown to affect adiposity and glucose homeostasis in mice, suggesting that the skeleton influences energy metabolism through an endocrine mechanism. The aim of this study was to investigate the relationship between plasma osteocalcin and parameters reflecting fat mass and glucose homeostasis in humans. Fasting levels of plasma osteocalcin, plasma glucose, serum insulin, and lipids were analyzed in elderly men (75.3 ± 3.2 yr of age) in the Gothenburg part (all subjects, n = 1010; nondiabetic, n = 857; diabetic, n = 153) of the MrOS Sweden study. Fat mass and lean mass were analyzed using DXA. Diabetic subjects had lower plasma osteocalcin (−21.7%, p < 0.001) than nondiabetic subjects. For both all subjects and nondiabetic subjects, plasma osteocalcin was clearly inversely related to body mass index (BMI), fat mass, and plasma glucose (p < 0.001), whereas it was not associated with height or lean mass. Plasma osteocalcin explained a substantial part (6.3%) of the variance in plasma glucose, whereas it associated moderately with serum insulin. Multiple linear regression models adjusting for serum insulin and fat mass showed that plasma osteocalcin was an independent negative predictor of plasma glucose (p < 0.001). We herein, for the first time in humans, show that plasma osteocalcin is inversely related to fat mass and plasma glucose. Although one should be cautious with mechanistic interpretations of cross‐sectional association studies, our human data support recently published experimental studies, showing endocrine functions of osteoblast‐derived osteocalcin on glucose and fat homeostasis.
Endocrine Reviews | 2009
Claes Ohlsson; Subburaman Mohan; Klara Sjögren; Åsa Tivesten; Jörgen Isgaard; Olle Isaksson; John-Olov Jansson; Johan Svensson
IGF-I is expressed in virtually every tissue of the body, but with much higher expression in the liver than in any other tissue. Studies using mice with liver-specific IGF-I knockout have demonstrated that liver-derived IGF-I, constituting a major part of circulating IGF-I, is an important endocrine factor involved in a variety of physiological and pathological processes. Detailed studies comparing the impact of liver-derived IGF-I and local bone-derived IGF-I demonstrate that both sources of IGF-I can stimulate longitudinal bone growth. We propose here that liver-derived circulating IGF-I and local bone-derived IGF-I to some extent have overlapping growth-promoting effects and might have the capacity to replace each other (= redundancy) in the maintenance of normal longitudinal bone growth. Importantly, and in contrast to the regulation of longitudinal bone growth, locally derived IGF-I cannot replace (= lack of redundancy) liver-derived IGF-I for the regulation of a large number of other parameters including GH secretion, cortical bone mass, kidney size, prostate size, peripheral vascular resistance, spatial memory, sodium retention, insulin sensitivity, liver size, sexually dimorphic liver functions, and progression of some tumors. It is clear that a major role of liver-derived IGF-I is to regulate GH secretion and that some, but not all, of the phenotypes in the liver-specific IGF-I knockout mice are indirect, mediated via the elevated GH levels. All of the described multiple endocrine effects of liver-derived IGF-I should be considered in the development of possible novel treatment strategies aimed at increasing or reducing endocrine IGF-I activity.
The Journal of Clinical Endocrinology and Metabolism | 2009
Åsa Tivesten; Liesbeth Vandenput; Fernand Labrie; Magnus Karlsson; Östen Ljunggren; Dan Mellström; Claes Ohlsson
CONTEXT Age-related reduction of serum testosterone may contribute to the signs and symptoms of aging, but previous studies report conflicting evidence about testosterone levels and male mortality. No large prospective cohort study has determined a possible association between serum estradiol and mortality in men. OBJECTIVE The main objective was to examine the association between serum testosterone and estradiol and all-cause mortality in elderly men. DESIGN, SETTING, AND PARTICIPANTS We used specific gas chromatography-mass spectrometry to analyze serum sex steroids at baseline in older men who participated in the prospective population-based MrOS Sweden cohort (n = 3014; mean age, 75 yr; range, 69-80 yr). MAIN OUTCOME MEASURE All-cause mortality by serum testosterone and estradiol levels. RESULTS During a mean follow-up period of 4.5 yr, 383 deaths occurred. In multivariate hazards regression models, low levels (within quartile 1 vs. quartiles 2-4) of both testosterone [hazard ratio (HR), 1.65; 95% confidence interval (CI), 1.29-2.12] and estradiol (HR, 1.54; 95% CI, 1.22-1.95) associated with mortality. A model including both hormones showed that both low testosterone (HR, 1.46; 95% CI, 1.11-1.92) and estradiol (HR, 1.33; 95% CI, 1.02-1.73) predicted mortality. Risk of death nearly doubled (HR, 1.96; 95% CI, 1.46-2.62) in subjects with low levels of both testosterone and estradiol compared with subjects within quartiles 2-4 of both hormones. CONCLUSIONS Elderly men with low serum testosterone and estradiol have increased risk of mortality, and subjects with low values of both testosterone and estradiol have the highest risk of mortality.
Journal of the American College of Cardiology | 2011
Claes Ohlsson; Elizabeth Barrett-Connor; Shalender Bhasin; Eric S. Orwoll; Fernand Labrie; Magnus Karlsson; Östen Ljunggren; Liesbeth Vandenput; Dan Mellström; Åsa Tivesten
OBJECTIVES We tested the hypothesis that serum total testosterone and sex hormone-binding globulin (SHBG) levels predict cardiovascular (CV) events in community-dwelling elderly men. BACKGROUND Low serum testosterone is associated with increased adiposity, an adverse metabolic risk profile, and atherosclerosis. However, few prospective studies have demonstrated a protective link between endogenous testosterone and CV events. Polymorphisms in the SHBG gene are associated with risk of type 2 diabetes, but few studies have addressed SHBG as a predictor of CV events. METHODS We used gas chromatography/mass spectrometry to analyze baseline levels of testosterone in the prospective population-based MrOS (Osteoporotic Fractures in Men) Sweden study (2,416 men, age 69 to 81 years). SHBG was measured by immunoradiometric assay. CV clinical outcomes were obtained from central Swedish registers. RESULTS During a median 5-year follow-up, 485 CV events occurred. Both total testosterone and SHBG levels were inversely associated with the risk of CV events (trend over quartiles: p = 0.009 and p = 0.012, respectively). Men in the highest quartile of testosterone (≥550 ng/dl) had a lower risk of CV events compared with men in the 3 lower quartiles (hazard ratio: 0.70, 95% confidence interval: 0.56 to 0.88). This association remained after adjustment for traditional CV risk factors and was not materially changed in analyses excluding men with known CV disease at baseline (hazard ratio: 0.71, 95% confidence interval: 0.53 to 0.95). In models that included both testosterone and SHBG, testosterone but not SHBG predicted CV risk. CONCLUSIONS High serum testosterone predicted a reduced 5-year risk of CV events in elderly men.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2011
Majd A.I. Mirza; Johan Alsiö; Ann Hammarstedt; Reinhold G. Erben; Karl Michaëlsson; Åsa Tivesten; Richard Marsell; Eric S. Orwoll; Magnus Karlsson; Östen Ljunggren; Dan Mellström; Lars Lind; Claes Ohlsson; Tobias E. Larsson
Objective—Disturbances in mineral metabolism define an increased cardiovascular risk in patients with chronic kidney disease. Fibroblast growth factor-23 (FGF23) is a circulating regulator of phosphate and vitamin D metabolism and has recently been implicated as a putative pathogenic factor in cardiovascular disease. Because other members of the FGF family play a role in lipid and glucose metabolism, we hypothesized that FGF23 would associate with metabolic factors that predispose to an increased cardiovascular risk. The goal of this study was to investigate the relationship between FGF23 and metabolic cardiovascular risk factors in the community. Methods and Results—Relationships between serum FGF23 and body mass index (BMI), waist circumference, waist-to-hip ratio, serum lipids, and fat mass were examined in 2 community-based, cross-sectional cohorts of elderly whites (Osteoporotic Fractures in Men Study: 964 men aged 75±3.2; Prospective Investigation of the Vasculature in Uppsala Seniors study: 946 men and women aged 70). In both cohorts, FGF23 associated negatively with high-density lipoprotein and apolipoprotein A1 (7% to 21% decrease per 1-SD increase in log FGF23; P<0.01) and positively with triglycerides (11% to 14% per 1-SD increase in log FGF23; P<0.01). A 1-SD increase in log FGF23 was associated with a 7% to 20% increase in BMI, waist circumference, and waist-to-hip ratio and a 7% to 18% increase in trunk and total body fat mass (P<0.01) as determined by whole-body dual x-ray absorptiometry. FGF23 levels were higher in subjects with the metabolic syndrome compared with those without (46.4 versus 41.2 pg/mL; P<0.05) and associated with an increased risk of having the metabolic syndrome (OR per 1-SD increase in log FGF23, 1.21; 95% CI, 1.04 to 1.40; P<0.05). Conclusion—We report for the first time on associations between circulating FGF23, fat mass, and adverse lipid metabolism resembling the metabolic syndrome, potentially representing a novel pathway(s) linking high FGF23 to an increased cardiovascular risk.
Endocrinology | 2015
Maria E. Nilsson; Liesbeth Vandenput; Åsa Tivesten; Anna-Karin Norlén; Marie K Lagerquist; Sara H. Windahl; Anna E. Börjesson; Helen H. Farman; Matti Poutanen; Anna Benrick; Manuel Maliqueo; Elisabet Stener-Victorin; Henrik Ryberg; Claes Ohlsson
Accurate measurement of sex steroid concentrations in rodent serum is essential to evaluate mouse and rat models for sex steroid-related disorders. The aim of the present study was to develop a sensitive and specific gas chromatography-tandem mass spectrometry (GC-MS/MS) method to assess a comprehensive sex steroid profile in rodent serum. A major effort was invested in reaching an exceptionally high sensitivity for measuring serum estradiol concentrations. We established a GC-MS/MS assay with a lower limit of detection for estradiol, estrone, T, DHT, progesterone, androstenedione, and dehydroepiandrosterone of 0.3, 0.5, 4.0, 1.6, 8, 4.0, and 50 pg/mL, respectively, whereas the corresponding values for the lower limit of quantification were 0.5, 0.5, 8, 2.5, 74, 12, and 400 pg/mL, respectively. Calibration curves were linear, intra- and interassay coefficients of variation were low, and accuracy was excellent for all analytes. The established assay was used to accurately measure a comprehensive sex steroid profile in female rats and mice according to estrous cycle phase. In addition, we characterized the impact of age, sex, gonadectomy, and estradiol treatment on serum concentrations of these sex hormones in mice. In conclusion, we have established a highly sensitive and specific GC-MS/MS method to assess a comprehensive sex steroid profile in rodent serum in a single run. This GC-MS/MS assay has, to the best of our knowledge, the best detectability reported for estradiol. Our method therefore represents an ideal tool to characterize sex steroid metabolism in a variety of sex steroid-related rodent models and in human samples with low estradiol levels.
Journal of Bone and Mineral Research | 2004
Åsa Tivesten; Sofia Movérare-Skrtic; Andrei S. Chagin; Katrien Venken; Phil Salmon; Dirk Vanderschueren; Lars Sävendahl; Agneta Holmäng; Claes Ohlsson
Both ER and AR activation regulates trabecular bone mass. We show that combined estrogen and androgen treatment results in additive protection of trabecular bone in OVX rats. This may in part be attributable to the effect of AR activation to attenuate the inhibitory effect of ER activation on bone formation.
The Journal of Clinical Endocrinology and Metabolism | 2013
Claes Ohlsson; Maria E. Nilsson; Åsa Tivesten; Henrik Ryberg; Dan Mellström; Magnus Karlsson; Östen Ljunggren; Fernand Labrie; Eric S. Orwoll; David M. Lee; Stephen R. Pye; Terence W. O'Neill; Joseph D. Finn; Judith E. Adams; Kate Ward; Steven Boonen; Gyorgy Bartfai; Felipe F. Casanueva; Gianni Forti; Aleksander Giwercman; Thang S. Han; Ilpo Huhtaniemi; Krzysztof Kula; Michael E. J. Lean; Neil Pendleton; Margus Punab; Dirk Vanderschueren; Frederick C. W. Wu; Liesbeth Vandenput
Context: Immunoassay-based techniques, routinely used to measure serum estradiol (E2), are known to have reduced specificity, especially at lower concentrations, when compared with the gold standard technique of mass spectrometry (MS). Different measurement techniques may be responsible for the conflicting results of associations between serum E2 and clinical phenotypes in men. Objective: Our objective was to compare immunoassay and MS measurements of E2 levels in men and evaluate associations with clinical phenotypes. Design and Setting: Middle-aged and older male subjects participating in the population-based Osteoporotic Fractures in Men (MrOS) Sweden study (n = 2599), MrOS US (n = 688), and the European Male Aging Study (n = 2908) were included. Main Outcome Measures: Immunoassay and MS measurements of serum E2 were compared and related to bone mineral density (BMD; measured by dual energy x-ray absorptiometry) and ankle-brachial index. Results: Within each cohort, serum E2 levels obtained by immunoassay and MS correlated moderately (Spearman rank correlation coefficient rS 0.53–0.76). Serum C-reactive protein (CRP) levels associated significantly (albeit to a low extent, rS = 0.29) with immunoassay E2 but not with MS E2 levels. Similar associations of immunoassay E2 and MS E2 were seen with lumbar spine and total hip BMD, independent of serum CRP. However, immunoassay E2, but not MS E2, associated inversely with ankle-brachial index, and this correlation was lost after adjustment for CRP. Conclusions: Our findings suggest interference in the immunoassay E2 analyses, possibly by CRP or a CRP-associated factor. Although associations with BMD remain unaffected, this might imply for a reevaluation of previous association studies between immunoassay E2 levels and inflammation-related outcomes.
Experimental Gerontology | 2014
Johan Svensson; Magnus Karlsson; Östen Ljunggren; Åsa Tivesten; Dan Mellström; Sofia Movérare-Skrtic
Leukocyte telomere length (LTL) is related to the aging of somatic cells. We hypothesized that LTL is inversely associated with mortality in elderly men. LTL was measured in 2744 elderly men (mean age 75.5, range 69-81years) included in the prospective population-based MrOS-Sweden study. Mortality data were obtained from national health registers with no loss of follow-up. During the follow-up (mean 6.0years), 556 (20%) of the participants died. Using Cox proportional hazards regression, tertile of LTL did not associate with all-cause mortality [tertile 1 (shortest) or 2 (middle) vs. tertile 3 (longest); hazard ratio (HR)=1.05, 95% confidence interval (CI) 0.85-1.28 and HR=0.97, 95% CI 0.79-1.19, respectively]. Furthermore, LTL did not associate with cancer (197 events) or cardiovascular disease (CVD, 206 events) mortality (tertile 1 vs. tertile 3; HR=0.94, 95% CI 0.67-1.34 and HR=0.94, 95% CI 0.68-1.30, respectively). The lack of association between LTL and mortality remained also after adjustment for multiple covariates. Our results demonstrate that LTL is not associated with all-cause mortality or mortality due to cancer or CVD in elderly men. Further studies are needed to determine whether LTL can predict the risk of mortality in elderly women.
The Journal of Clinical Endocrinology and Metabolism | 2012
Johan Svensson; Daniel Carlzon; Max Petzold; Magnus Karlsson; Östen Ljunggren; Åsa Tivesten; Dan Mellström; Claes Ohlsson
BACKGROUND Although recent population-based studies suggest a U-shaped relationship between serum IGF-I concentration and all-cause mortality, the distribution of death causes underlying this association remains unclear. We hypothesized that high IGF-I levels associate with increased cancer mortality, whereas low IGF-I levels associate with increased cardiovascular disease (CVD) mortality. METHODS Serum IGF-I levels were measured in 2901 elderly men (mean age 75.4, range 69-81 yr) included in the prospective population-based Osteoporotic Fractures in Men Study (Sweden) study. Mortality data were obtained from central registers with no loss of follow-up. The statistical analyses included Cox proportional hazards regressions with or without a spline approach. RESULTS During the follow-up (mean 6.0 yr), 586 of the participants died (cancer deaths, n = 211; CVD deaths, n = 214). As expected, our data revealed a U-shaped association between serum IGF-I levels and all-cause mortality. Low as well as high serum IGF-I (quintile 1 or 5 vs. quintiles 2-4) associated with increased cancer mortality [hazard ratio (HR) = 1.86, 95% confidence interval (CI) = 1.34-2.58; and HR = 1.90, 95% CI = 1.37-2.65, respectively]. Only low serum IGF-I associated with increased CVD mortality (quintile 1 vs. quintiles 2-4, HR = 1.48, 95% CI = 1.08-2.04). These associations remained after adjustment for multiple covariates and exclusion of men who died during the first 2 yr of follow-up. CONCLUSIONS Our findings demonstrate that both low and high serum IGF-I levels are risk markers for increased cancer mortality in older men. Moreover, low IGF-I levels associate with increased CVD mortality.