Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asako Takanohashi is active.

Publication


Featured researches published by Asako Takanohashi.


American Journal of Human Genetics | 2013

A De Novo Mutation in the β-Tubulin Gene TUBB4A Results in the Leukoencephalopathy Hypomyelination with Atrophy of the Basal Ganglia and Cerebellum

Cas Simons; Nicole I. Wolf; Nathan McNeil; Ljubica Caldovic; Joseph M. Devaney; Asako Takanohashi; Joanna Crawford; Kelin Ru; Sean M. Grimmond; David Miller; Davide Tonduti; Johanna L. Schmidt; Robert S. Chudnow; Rudy Van Coster; Lieven Lagae; Jill Kisler; Juergen Sperner; Marjo S. van der Knaap; Raphael Schiffmann; Ryan J. Taft; Adeline Vanderver

Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a rare hereditary leukoencephalopathy that was originally identified by MRI pattern analysis, and it has thus far defied all attempts at identifying the causal mutation. Only 22 cases are published in the literature to date. We performed exome sequencing on five family trios, two family quartets, and three single probands, which revealed that all eleven H-ABC-diagnosed individuals carry the same de novo single-nucleotide TUBB4A mutation resulting in nonsynonymous change p.Asp249Asn. Detailed investigation of one of the family quartets with the singular finding of an H-ABC-affected sibling pair revealed maternal mosaicism for the mutation, suggesting that rare de novo mutations that are initially phenotypically neutral in a mosaic individual can be disease causing in the subsequent generation. Modeling of TUBB4A shows that the mutation creates a nonsynonymous change at a highly conserved asparagine that sits at the intradimer interface of α-tubulin and β-tubulin, and this change might affect tubulin dimerization, microtubule polymerization, or microtubule stability. Consistent with H-ABCs clinical presentation, TUBB4A is highly expressed in neurons, and a recent report has shown that an N-terminal alteration is associated with a heritable dystonia. Together, these data demonstrate that a single de novo mutation in TUBB4A results in H-ABC.


Annals of Neurology | 2016

Whole exome sequencing in patients with white matter abnormalities

Adeline Vanderver; Cas Simons; Guy Helman; Joanna Crawford; Nicole I. Wolf; Geneviève Bernard; Amy Pizzino; Johanna L. Schmidt; Asako Takanohashi; David Miller; Amirah Khouzam; Vani Rajan; Erica Ramos; Shimul Chowdhury; Tina Hambuch; Kelin Ru; Gregory J. Baillie; Sean M. Grimmond; Ljubica Caldovic; Joseph M. Devaney; Miriam Bloom; Sarah H. Evans; Jennifer L. Murphy; Nathan McNeill; Brent L. Fogel; Raphael Schiffmann; Marjo S. van der Knaap; Ryan J. Taft

Here we report whole exome sequencing (WES) on a cohort of 71 patients with persistently unresolved white matter abnormalities with a suspected diagnosis of leukodystrophy or genetic leukoencephalopathy. WES analyses were performed on trio, or greater, family groups. Diagnostic pathogenic variants were identified in 35% (25 of 71) of patients. Potentially pathogenic variants were identified in clinically relevant genes in a further 7% (5 of 71) of cases, giving a total yield of clinical diagnoses in 42% of individuals. These findings provide evidence that WES can substantially decrease the number of unresolved white matter cases. Ann Neurol 2016;79:1031–1037


Annals of the Rheumatic Diseases | 2015

Aicardi–Goutières syndrome harbours abundant systemic and brain-reactive autoantibodies

Eloy Cuadrado; Adeline Vanderver; Kristy J. Brown; Annie Sandza; Asako Takanohashi; Machiel H. Jansen; Jasper J. Anink; Brian Herron; Simona Orcesi; Ivana Olivieri; Gillian I. Rice; Eleonora Aronica; Pierre Lebon; Yanick J. Crow; Elly M. Hol; Taco W. Kuijpers

Objectives Aicardi–Goutières syndrome (AGS) is an autoimmune disorder that shares similarities with systemic lupus erythematous. AGS inflammatory responses specially target the cerebral white matter. However, it remains uncertain why the brain is the most affected organ, and little is known about the presence of autoantibodies in AGS. Here, we aim to profile specific autoantibodies in AGS and to determine whether these autoantibodies target cerebral epitopes. Methods Using a multiplex microarray, we assessed the spectrum of serum autoantibodies in 56 genetically confirmed patients with AGS. We investigated the presence of immunoglobulins in AGS brain specimens using immunohistochemistry and studied the reactivity of sera against brain epitopes with proteomics. Results Serum from patients exhibited high levels of IgGs against nuclear antigens (gP210, Nup62, PCNA, Ro/SSA, Sm/RNP complex, SS-A/SS-B), components of the basement membrane (entactin, laminin), fibrinogen IV and gliadin. Upon testing whether antibodies in AGS could be found in the central nervous system, IgGs were identified to target in vivo endothelial cells in vivo and astrocytes in brain sections of deceased patients with AGS. Using a proteomics approach, we were able to confirm that IgGs in serum samples from AGS patients bind epitopes present in the cerebral white matter. Conclusions Patients with AGS produce a broad spectrum of autoantibodies unique from other autoimmune diseases. Some of these autoantibodies target endothelial cells and astrocytes in the brain of the affected patients, perhaps explaining the prominence of neurological disease in the AGS phenotype.


Molecular Genetics and Metabolism | 2015

Disease specific therapies in leukodystrophies and leukoencephalopathies.

Guy Helman; Keith Van Haren; Joshua L. Bonkowsky; Geneviève Bernard; Amy Pizzino; Nancy Braverman; Dean Suhr; Marc C. Patterson; S Ali Fatemi; Jeff Leonard; Marjo S. van der Knaap; Stephen A. Back; Stephen Damiani; Steven A. Goldman; Asako Takanohashi; Magdalena A. Petryniak; David H. Rowitch; Albee Messing; Lawrence Wrabetz; Raphael Schiffmann; Florian Eichler; Maria L. Escolar; Adeline Vanderver

Leukodystrophies are a heterogeneous, often progressive group of disorders manifesting a wide range of symptoms and complications. Most of these disorders have historically had no etiologic or disease specific therapeutic approaches. Recently, a greater understanding of the pathologic mechanisms associated with leukodystrophies has allowed clinicians and researchers to prioritize treatment strategies and advance research in therapies for specific disorders, some of which are on the verge of pilot or Phase I/II clinical trials. This shifts the care of leukodystrophy patients from the management of the complex array of symptoms and sequelae alone to targeted therapeutics. The unmet needs of leukodystrophy patients still remain an overwhelming burden. While the overwhelming consensus is that these disorders collectively are symptomatically treatable, leukodystrophy patients are in need of advanced therapies and if possible, a cure.


Neurology | 2013

Elevation of proinflammatory cytokines in patients with Aicardi-Goutières syndrome

Asako Takanohashi; Morgan Prust; Jichuan Wang; Heather Gordish-Dressman; Miriam Bloom; Gillian I. Rice; Johanna L. Schmidt; Yanick J. Crow; Pierre Lebon; Taco W. Kuijpers; Kanneboyina Nagaraju; Adeline Vanderver

Objective: This study explores a large panel of cytokines in plasma and CSF of patients with Aicardi-Goutières syndrome (AGS) at different ages, in order to establish signatures of cytokines most predictive of AGS. Methods: Plasma from 22 subjects with known mutations were assayed for cytokines using the Milliplex MAP Immunobead system, and compared to results from 8 age-matched normal controls. CSF of 11 additional patients with mutation-proven AGS was tested in an identical manner and compared to results from age-matched controls. Samples were banked and analysis was carried out retrospectively. Results: Significant elevations were seen in FMS-related tyrosine kinase 3 ligand, IP-10, interleukin (IL)–12p40, IL-15, tumor necrosis factor α, and soluble IL 2 receptor α in both AGS patient plasma and CSF relative to controls. Additionally, this cytokine signature was able to correctly cluster 9 of 11 AGS cases based on CSF values. While most cytokines decreased exponentially with age, a subgroup including IP-10 demonstrated persistent elevation beyond early childhood. Conclusion: Patients with AGS exhibit plasma and CSF elevations of proinflammatory cytokines. Selected cytokines remain persistently elevated beyond the initial disease phase. This panel of proinflammatory cytokines may be considered for use as diagnostic and therapeutic markers of disease, and may permit improved understanding of disease pathogenesis.


Human Molecular Genetics | 2017

TUBB4A mutations result in specific neuronal and oligodendrocytic defects that closely match clinically distinct phenotypes

Julian Curiel; Guillermo Rodríguez Bey; Asako Takanohashi; Marianna Bugiani; Xiaoqin Fu; Nicole I. Wolf; Bruce Nmezi; Raphael Schiffmann; Mona Bugaighis; Tyler Mark Pierson; Guy Helman; Cas Simons; Marjo S. van der Knaap; Judy S. Liu; Quasar Saleem Padiath; Adeline Vanderver

Hypomyelinating leukodystrophies are heritable disorders defined by lack of development of brain myelin, but the cellular mechanisms of hypomyelination are often poorly understood. Mutations in TUBB4A, encoding the tubulin isoform tubulin beta class IVA (Tubb4a), result in the symptom complex of hypomyelination with atrophy of basal ganglia and cerebellum (H-ABC). Additionally, TUBB4A mutations are known to result in a broad phenotypic spectrum, ranging from primary dystonia (DYT4), isolated hypomyelination with spastic quadriplegia, and an infantile onset encephalopathy, suggesting multiple cell types may be involved. We present a study of the cellular effects of TUBB4A mutations responsible for H-ABC (p.Asp249Asn), DYT4 (p.Arg2Gly), a severe combined phenotype with hypomyelination and encephalopathy (p.Asn414Lys), as well as milder phenotypes causing isolated hypomyelination (p.Val255Ile and p.Arg282Pro). We used a combination of histopathological, biochemical and cellular approaches to determine how these different mutations may have variable cellular effects in neurons and/or oligodendrocytes. Our results demonstrate that specific mutations lead to either purely neuronal, combined neuronal and oligodendrocytic or purely oligodendrocytic defects that closely match their respective clinical phenotypes. Thus, the DYT4 mutation that leads to phenotypes attributable to neuronal dysfunction results in altered neuronal morphology, but with unchanged tubulin quantity and polymerization, with normal oligodendrocyte morphology and myelin gene expression. Conversely, mutations associated with isolated hypomyelination (p.Val255Ile and p.Arg282Pro) and the severe combined phenotype (p.Asn414Lys) resulted in normal neuronal morphology but were associated with altered oligodendrocyte morphology, myelin gene expression, and microtubule dysfunction. The H-ABC mutation (p.Asp249Asn) that exhibits a combined neuronal and myelin phenotype had overlapping cellular defects involving both neuronal and oligodendrocyte cell types in vitro. Only mutations causing hypomyelination phenotypes showed altered microtubule dynamics and acted through a dominant toxic gain of function mechanism. The DYT4 mutation had no impact on microtubule dynamics suggesting a distinct mechanism of action. In summary, the different clinical phenotypes associated with TUBB4A reflect the selective and specific cellular effects of the causative mutations. Cellular specificity of disease pathogenesis is relevant to developing targeted treatments for this disabling condition.


Molecular Genetics and Metabolism | 2017

Neonatal detection of Aicardi Goutières Syndrome by increased C26: 0 lysophosphatidylcholine and interferon signature on newborn screening blood spots

Thaís Armangue; Joseph J. Orsini; Asako Takanohashi; Francesco Gavazzi; Alex Conant; Nicole Ulrick; Mark A. Morrissey; Norah Nahhas; Guy Helman; Heather Gordish-Dressman; Simona Orcesi; Davide Tonduti; Chloe Stutterd; Keith Van Haren; Camilo Toro; Alejandro Iglesias; Marjo S. van der Knaap; Raphaela Goldbach Mansky; A. B. Moser; Richard O. Jones; Adeline Vanderver

BACKGROUND Aicardi Goutières Syndrome (AGS) is a heritable interferonopathy associated with systemic autoinflammation causing interferon (IFN) elevation, central nervous system calcifications, leukodystrophy and severe neurologic sequelae. An infant with TREX1 mutations was recently found to have abnormal C26:0 lysophosphatidylcholine (C26:0 Lyso-PC) in a newborn screening platform for X-linked adrenoleukodystrophy, prompting analysis of this analyte in retrospectively collected samples from individuals affected by AGS. METHODS In this study, we explored C26:0 Lyso-PC levels and IFN signatures in newborn blood spots and post-natal blood samples in 19 children with a molecular and clinical diagnosis of AGS and in the blood spots of 22 healthy newborns. We used Nanostring nCounter™ for IFN-induced gene analysis and a high-performance liquid chromatography with tandem mass spectrometry (HPLC MS/MS) newborn screening platform for C26:0 Lyso-PC analysis. RESULTS Newborn screening cards from patients across six AGS associated genes were collected, with a median disease presentation of 2months. Thirteen out of 19 (68%) children with AGS had elevations of first tier C26:0 Lyso-PC (>0.4μM), that would have resulted in a second screen being performed in a two tier screening system for X-linked adrenoleukodystrophy (X-ALD). The median (95%CI) of first tier C26:0 Lyso-PC values in AGS individuals (0.43μM [0.37-0.48]) was higher than that seen in controls (0.21μM [0.21-0.21]), but lower than X-ALD individuals (0.72μM [0.59-0.84])(p<0.001). Fourteen of 19 children had elevated expression of IFN signaling on blood cards relative to controls (Sensitivity 73.7%, 95%CI 51-88%, Specificity 95%, 95% CI 78-99%) including an individual with delayed disease presentation (36months of age). All five AGS patients with negative IFN signature at birth had RNASEH2B mutations. Consistency of agreement between IFN signature in neonatal and post-natal samples was high (0.85). CONCLUSION This suggests that inflammatory markers in AGS can be identified in the newborn period, before symptom onset. Additionally, since C26:0 Lyso-PC screening is currently used in X-ALD newborn screening panels, clinicians should be alert to the fact that AGS infants may present as false positives during X-ALD screening.


Methods of Molecular Biology | 2011

Time Series Proteome Profiling

Catherine A. Formolo; Michelle Mintz; Asako Takanohashi; Kristy J. Brown; Adeline Vanderver; Brian D. Halligan; Yetrib Hathout

This chapter provides a detailed description of a method used to study temporal changes in the endoplasmic reticulum (ER) proteome of fibroblast cells exposed to ER stress agents (tunicamycin and thapsigargin). Differential stable isotope labeling by amino acids in cell culture (SILAC) is used in combination with crude ER fractionation, SDS-PAGE and LC-MS/MS to define altered protein expression in tunicamycin or thapsigargin treated cells versus untreated cells. Treated and untreated cells are harvested at different time points, mixed at a 1:1 ratio and processed for ER fractionation. Samples containing labeled and unlabeled proteins are separated by SDS-PAGE, bands are digested with trypsin and the resulting peptides analyzed by LC-MS/MS. Proteins are identified using Bioworks software and the Swiss-Prot database, whereas ratios of protein expression between treated and untreated cells are quantified using ZoomQuant software. Data visualization is facilitated by GeneSpring software.


Molecular Genetics and Metabolism | 2018

Aicardi goutières syndrome is associated with pulmonary hypertension

Laura A. Adang; David B. Frank; Ahmed Gilani; Asako Takanohashi; Nicole Ulrick; Abigail Collins; Zachary Cross; Csaba Galambos; Guy Helman; Usama Kanaan; Stephanie Keller; Dawn M. Simon; Omar Sherbini; Brian D. Hanna; Adeline Vanderver

While pulmonary hypertension (PH) is a potentially life threatening complication of many inflammatory conditions, an association between Aicardi Goutières syndrome (AGS), a rare genetic cause of interferon (IFN) overproduction, and the development of PH has not been characterized to date. We analyzed the cardiac function of individuals with AGS enrolled in the Myelin Disorders Bioregistry Project using retrospective chart review (n = 61). Additional prospective echocardiograms were obtained when possible (n = 22). An IFN signature score, a marker of systemic inflammation, was calculated through the measurement of mRNA transcripts of type I IFN-inducible genes (interferon signaling genes or ISG). Pathologic analysis was performed as available from autopsy samples. Within our cohort, four individuals were identified to be affected by PH: three with pathogenic gain-of-function mutations in the IFIH1 gene and one with heterozygous TREX1 mutations. All studied individuals with AGS were noted to have elevated IFN signature scores (Mann-Whitney p < .001), with the highest levels in individuals with IFIH1 mutations (Mann-Whitney p < .0001). We present clinical and histologic evidence of PH in a series of four individuals with AGS, a rare interferonopathy. Importantly, IFIH1 and TREX1 may represent a novel cause of PH. Furthermore, these findings underscore the importance of screening all individuals with AGS for PH.


Brain Pathology | 2018

Astrocytes, an active player in Aicardi-Goutières syndrome: Astrocytes in Aicardi-Goutières Syndrome

Sunetra Sase; Asako Takanohashi; Adeline Vanderver; Akshata Almad

Aicardi–Goutières syndrome (AGS) is an early‐onset, autoimmune and genetically heterogeneous disorder with severe neurologic injury. Molecular studies have established that autosomal recessive mutations in one of the following genes are causative: TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1 and IFIH1/MDA5. The phenotypic presentation and pathophysiology of AGS is associated with over‐production of the cytokine Interferon–alpha (IFN‐α) and its downstream signaling, characterized as type I interferonopathy. Astrocytes are one of the major source of IFN in the central nervous system (CNS) and it is proposed that they could be key players in AGS pathology. Astrocytes are the most ubiquitous glial cell in the CNS and perform a number of crucial and complex functions ranging from formation of blood‐brain barrier, maintaining ionic homeostasis, metabolic support to synapse formation and elimination in healthy CNS. Involvement of astrocytic dysfunction in neurological diseases—Alexanders disease, Epilepsy, Alzheimers and amyotrophic lateral sclerosis (ALS)—has been well‐established. It is now known that compromised astrocytic function can contribute to CNS abnormalities and severe neurodegeneration, nevertheless, its contribution in AGS is unclear. The current review discusses known molecular and cellular pathways for AGS mutations and how it stimulates IFN‐α signaling. We shed light on how astrocytes might be key players in the phenotypic presentations of AGS and emphasize the cell‐autonomous and non‐cell‐autonomous role of astrocytes. Understanding the contribution of astrocytes will help reveal mechanisms underlying interferonopathy and develop targeted astrocyte specific therapeutic treatments in AGS.

Collaboration


Dive into the Asako Takanohashi's collaboration.

Top Co-Authors

Avatar

Adeline Vanderver

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Guy Helman

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather Gordish-Dressman

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Johanna L. Schmidt

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Lebon

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Yanick J. Crow

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge