Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asami Nishimori is active.

Publication


Featured researches published by Asami Nishimori.


PLOS ONE | 2016

Immunohistochemical Analysis of PD-L1 Expression in Canine Malignant Cancers and PD-1 Expression on Lymphocytes in Canine Oral Melanoma.

Naoya Maekawa; Satoru Konnai; Tomohiro Okagawa; Asami Nishimori; Ryoyo Ikebuchi; Yusuke Izumi; Satoshi Takagi; Yumiko Kagawa; Chie Nakajima; Yasuhiko Suzuki; Yukinari Kato; Shiro Murata; Kazuhiko Ohashi

Spontaneous cancers are common diseases in dogs. Among these, some malignant cancers such as oral melanoma, osteosarcoma, hemangiosarcoma, and mast cell tumor are often recognized as clinical problems because, despite their high frequencies, current treatments for these cancers may not always achieve satisfying outcomes. The absence of effective systemic therapies against these cancers leads researchers to investigate novel therapeutic modalities, including immunotherapy. Programmed death 1 (PD-1) is a costimulatory receptor with immunosuppressive function. When it binds its ligands, PD-ligand 1 (PD-L1) or PD-L2, PD-1 on T cells negatively regulates activating signals from the T cell receptor, resulting in the inhibition of the effector function of cytotoxic T lymphocytes. Aberrant PD-L1 expression has been reported in many human cancers and is considered an immune escape mechanism for cancers. In clinical trials, anti-PD-1 or anti-PD-L1 antibodies induced tumor regression for several malignancies, including advanced melanoma, non-small cell lung carcinoma, and renal cell carcinoma. In this study, to assess the potential of the PD-1/PD-L1 axis as a novel therapeutic target for canine cancer immunotherapy, immunohistochemical analysis of PD-L1 expression in various malignant cancers of dogs was performed. Here, we show that dog oral melanoma, osteosarcoma, hemangiosarcoma, mast cell tumor, mammary adenocarcinoma, and prostate adenocarcinoma expressed PD-L1, whereas some other types of cancer did not. In addition, PD-1 was highly expressed on tumor-infiltrating lymphocytes obtained from oral melanoma, showing that lymphocytes in this cancer type might have been functionally exhausted. These results strongly encourage the clinical application of PD-1/PD-L1 inhibitors as novel therapeutic agents against these cancers in dogs.


Infection and Immunity | 2016

Bovine Immunoinhibitory Receptors Contribute to Suppression of Mycobacterium avium subsp. paratuberculosis-Specific T-Cell Responses.

Tomohiro Okagawa; Satoru Konnai; Asami Nishimori; Ryoyo Ikebuchi; Seiko Mizorogi; Reiko Nagata; Satoko Kawaji; Shogo Tanaka; Yumiko Kagawa; Shiro Murata; Yasuyuki Mori; Kazuhiko Ohashi

ABSTRACT Johnes disease (paratuberculosis) is a chronic enteritis in cattle that is caused by intracellular infection with Mycobacterium avium subsp. paratuberculosis. This infection is characterized by the functional exhaustion of T-cell responses to M. avium subsp. paratuberculosis antigens during late subclinical and clinical stages, presumably facilitating the persistence of this bacterium and the formation of clinical lesions. However, the mechanisms underlying T-cell exhaustion in Johnes disease are poorly understood. Thus, we performed expression and functional analyses of the immunoinhibitory molecules programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) and lymphocyte activation gene 3 (LAG-3)/major histocompatibility complex class II (MHC-II) in M. avium subsp. paratuberculosis-infected cattle during the late subclinical stage. Flow cytometric analyses revealed the upregulation of PD-1 and LAG-3 in T cells in infected animals, which suffered progressive suppression of interferon gamma (IFN-γ) responses to the M. avium subsp. paratuberculosis antigen. In addition, PD-L1 and MHC-II were expressed on macrophages from infected animals, consistent with PD-1 and LAG-3 pathways contributing to the suppression of IFN-γ responses during the subclinical stages of M. avium subsp. paratuberculosis infection. Furthermore, dual blockade of PD-L1 and LAG-3 enhanced M. avium subsp. paratuberculosis-specific IFN-γ responses in blood from infected animals, and in vitro LAG-3 blockade enhanced IFN-γ production from M. avium subsp. paratuberculosis-specific CD4+ and CD8+ T cells. Taken together, the present data indicate that M. avium subsp. paratuberculosis-specific T-cell exhaustion is in part mediated by PD-1/PD-L1 and LAG-3/MHC-II interactions and that LAG-3 is a molecular target for the control of M. avium subsp. paratuberculosis-specific T-cell responses.


Veterinary Immunology and Immunopathology | 2015

Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection

Saori Suzuki; Satoru Konnai; Tomohiro Okagawa; Ryoyo Ikebuchi; Asami Nishimori; Junko Kohara; Claro N. Mingala; Shiro Murata; Kazuhiko Ohashi

Regulatory T cells (Tregs) play a critical role in the maintenance of the hosts immune system. Tregs, particularly CD4(+)CD25(+)Foxp3(+) T cells, have been reported to be involved in the immune evasion mechanism of tumors and several pathogens that cause chronic infections. Recent studies showed that a Treg-associated marker, cytotoxic T-lymphocyte antigen 4 (CTLA-4), is closely associated with the progression of several diseases. We recently reported that the proportion of Foxp3(+)CD4(+) cells was positively correlated with the number of lymphocytes, virus titer, and virus load but inversely correlated with IFN-γ expression in cattle infected with bovine leukemia virus (BLV), which causes chronic infection and lymphoma in its host. Here the kinetics of CTLA-4(+) cells were analyzed in BLV-infected cattle. CTLA-4 mRNA was predominantly expressed in CD4(+) T cells in BLV-infected cattle, and the expression was positively correlated with Foxp3 mRNA expression. To test for differences in the protein expression level of CTLA-4, we measured the proportion of CTLA-4-expressing cells by flow cytometry. In cattle with persistent lymphocytosis (PL), mean fluorescence intensities (MFIs) of CTLA-4 on CD4(+) and CD25(+) T cells were significantly increased compared with that in control and aleukemic (AL) cattle. The percentage of CTLA-4(+) cells in the CD4(+) T cell subpopulation was positively correlated with TGF-β mRNA expression, suggesting that CD4(+)CTLA-4(+) T cells have a potentially immunosuppressive function in BLV infection. In the limited number of cattle that were tested, the anti-CTLA-4 antibody enhanced the expression of CD69, IL-2, and IFN-γ mRNA in anti-programmed death ligand 1 (PD-L1) antibody-treated peripheral blood mononuclear cells from BLV-infected cattle. Together with previous findings, the present results indicate that Tregs may be involved in the inhibition of T cell function during BLV infection.


PLOS ONE | 2017

In vitro and in vivo antivirus activity of an anti-programmed death-ligand 1 (PD-L1) rat-bovine chimeric antibody against bovine leukemia virus infection

Asami Nishimori; Satoru Konnai; Tomohiro Okagawa; Naoya Maekawa; Ryoyo Ikebuchi; Shinya Goto; Yamato Sajiki; Yasuhiko Suzuki; Junko Kohara; Satoshi Ogasawara; Yukinari Kato; Shiro Murata; Kazuhiko Ohashi

Programmed death-1 (PD-1), an immunoinhibitory receptor on T cells, is known to be involved in immune evasion through its binding to PD-ligand 1 (PD-L1) in many chronic diseases. We previously found that PD-L1 expression was upregulated in cattle infected with bovine leukemia virus (BLV) and that an antibody that blocked the PD-1/PD-L1 interaction reactivated T-cell function in vitro. Therefore, this study assessed its antivirus activities in vivo. First, we inoculated the anti-bovine PD-L1 rat monoclonal antibody 4G12 into a BLV-infected cow. However, this did not induce T-cell proliferation or reduction of BLV provirus loads during the test period, and only bound to circulating IgM+ B cells until one week post-inoculation. We hypothesized that this lack of in vivo effects was due to its lower stability in cattle and so established an anti-PD-L1 rat-bovine chimeric antibody (Boch4G12). Boch4G12 was able to bind specifically with bovine PD-L1, interrupt the PD-1/PD-L1 interaction, and activate the immune response in both healthy and BLV-infected cattle in vitro. Therefore, we experimentally infected a healthy calf with BLV and inoculated it intravenously with 1 mg/kg of Boch4G12 once it reached the aleukemic (AL) stage. Cultivation of peripheral blood mononuclear cells (PBMCs) isolated from the tested calf indicated that the proliferation of CD4+ T cells was increased by Boch4G12 inoculation, while BLV provirus loads were significantly reduced, clearly demonstrating that this treatment induced antivirus activities. Therefore, further studies using a large number of animals are required to support its efficacy for clinical application.


Archives of Virology | 2016

Detection of bovine leukemia virus and identification of its genotype in Mongolian cattle

Nyamsuren Ochirkhuu; Satoru Konnai; Raadan Odbileg; Asami Nishimori; Tomohiro Okagawa; Shiro Murata; Kazuhiko Ohashi

Epidemiological studies have indicated that bovine leukemia virus (BLV) infection is globally distributed. However, no information regarding the disease and genetic diversity of the virus in the cattle of Mongolia is currently available. In this study, the prevalence of BLV was assessed using PCR, and the genetic diversity was analyzed through DNA sequencing. Of the 517 samples tested, 20 positives were identified. Phylogenetic analysis showed that six, one, and four isolates were classified into genotype 4, 7, and 1, respectively. Most isolates were clustered with isolates from Eastern Europe and Russia. This study is the first to investigate the BLV genotype in Mongolia.


Immunity, inflammation and disease | 2017

Increase of cells expressing PD-1 and PD-L1 and enhancement of IFN-γ production via PD-1/PD-L1 blockade in bovine mycoplasmosis

Shinya Goto; Satoru Konnai; Tomohiro Okagawa; Asami Nishimori; Naoya Maekawa; Satoshi Gondaira; Hidetoshi Higuchi; Masateru Koiwa; Motoshi Tajima; Junko Kohara; Satoshi Ogasawara; Yukinari Kato; Yasuhiko Suzuki; Shiro Murata; Kazuhiko Ohashi

Bovine mycoplasma, chiefly Mycoplasma bovis, is a pathogen that causes pneumonia, mastitis, arthritis, and otitis media in cattle. This pathogen exerts immunosuppressive effects, such as the inhibition of interferon production. However, the mechanisms involved in bovine mycoplasmosis have not been fully elucidated. In this study, we investigated the role of the programmed death‐1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) pathway in immunosuppression in bovine mycoplasmosis.


Scientific Reports | 2017

A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma

Naoya Maekawa; Satoru Konnai; Satoshi Takagi; Yumiko Kagawa; Tomohiro Okagawa; Asami Nishimori; Ryoyo Ikebuchi; Yusuke Izumi; Tatsuya Deguchi; Chie Nakajima; Yukinari Kato; Keiichi Yamamoto; Hidetoshi Uemura; Yasuhiko Suzuki; Shiro Murata; Kazuhiko Ohashi

Immunotherapy targeting immune checkpoint molecules, programmed cell death 1 (PD-1) and PD-ligand 1 (PD-L1), using therapeutic antibodies has been widely used for some human malignancies in the last 5 years. A costimulatory receptor, PD-1, is expressed on T cells and suppresses effector functions when it binds to its ligand, PD-L1. Aberrant PD-L1 expression is reported in various human cancers and is considered an immune escape mechanism. Antibodies blocking the PD-1/PD-L1 axis induce antitumour responses in patients with malignant melanoma and other cancers. In dogs, no such clinical studies have been performed to date because of the lack of therapeutic antibodies that can be used in dogs. In this study, the immunomodulatory effects of c4G12, a canine-chimerised anti-PD-L1 monoclonal antibody, were evaluated in vitro, demonstrating significantly enhanced cytokine production and proliferation of dog peripheral blood mononuclear cells. A pilot clinical study was performed on seven dogs with oral malignant melanoma (OMM) and two with undifferentiated sarcoma. Objective antitumour responses were observed in one dog with OMM (14.3%, 1/7) and one with undifferentiated sarcoma (50.0%, 1/2) when c4G12 was given at 2 or 5 mg/kg, every 2 weeks. c4G12 could be a safe and effective treatment option for canine cancers.


Frontiers in Immunology | 2017

Anti-Bovine Programmed Death-1 Rat–Bovine Chimeric Antibody for Immunotherapy of Bovine Leukemia Virus Infection in Cattle

Tomohiro Okagawa; Satoru Konnai; Asami Nishimori; Naoya Maekawa; Ryoyo Ikebuchi; Shinya Goto; Chie Nakajima; Junko Kohara; Satoshi Ogasawara; Yukinari Kato; Yasuhiko Suzuki; Shiro Murata; Kazuhiko Ohashi

Blockade of immunoinhibitory molecules, such as programmed death-1 (PD-1)/PD-ligand 1 (PD-L1), is a promising strategy for reinvigorating exhausted T cells and preventing disease progression in a variety of chronic infections. Application of this therapeutic strategy to cattle requires bovinized chimeric antibody targeting immunoinhibitory molecules. In this study, anti-bovine PD-1 rat–bovine chimeric monoclonal antibody 5D2 (Boch5D2) was constructed with mammalian expression systems, and its biochemical function and antiviral effect were characterized in vitro and in vivo using cattle infected with bovine leukemia virus (BLV). Purified Boch5D2 was capable of detecting bovine PD-1 molecules expressed on cell membranes in flow cytometric analysis. In particular, Biacore analysis determined that the binding affinity of Boch5D2 to bovine PD-1 protein was similar to that of the original anti-bovine PD-1 rat monoclonal antibody 5D2. Boch5D2 was also capable of blocking PD-1/PD-L1 binding at the same level as 5D2. The immunomodulatory and therapeutic effects of Boch5D2 were evaluated by in vivo administration of the antibody to a BLV-infected calf. Inoculated Boch5D2 was sustained in the serum for a longer period. Boch5D2 inoculation resulted in activation of the proliferation of BLV-specific CD4+ T cells and decrease in the proviral load of BLV in the peripheral blood. This study demonstrates that Boch5D2 retains an equivalent biochemical function to that of the original antibody 5D2 and is a candidate therapeutic agent for regulating antiviral immune response in vivo. Clinical efficacy of PD-1/PD-L1 blockade awaits further experimentation with a large number of animals.


Journal of Veterinary Medical Science | 2016

Direct polymerase chain reaction from blood and tissue samples for rapid diagnosis of bovine leukemia virus infection

Asami Nishimori; Satoru Konnai; Ryoyo Ikebuchi; Tomohiro Okagawa; Ayako Nakahara; Shiro Murata; Kazuhiko Ohashi

Bovine leukemia virus (BLV) infection induces bovine leukemia in cattle and causes significant financial harm to farmers and farm management. There is no effective therapy or vaccine; thus, the diagnosis and elimination of BLV-infected cattle are the most effective method to eradicate the infection. Clinical veterinarians need a simpler and more rapid method of diagnosing infection, because both nested polymerase chain reaction (PCR) and real-time PCR are labor intensive, time-consuming, and require specialized molecular biology techniques and expensive equipment. In this study, we describe a novel PCR method for amplifying the BLV provirus from whole blood, thus eliminating the need for DNA extraction. Although the sensitivity of PCR directly from whole blood (PCR-DB) samples as measured in bovine blood containing BLV-infected cell lines was lower than that of nested PCR, the PCR-DB technique showed high specificity and reproducibility. Among 225 clinical samples, 49 samples were positive by nested PCR, and 37 samples were positive by PCR-DB. There were no false positive samples; thus, PCR-DB sensitivity and specificity were 75.51% and 100%, respectively. However, the provirus loads of the samples detected by nested PCR and not PCR-DB were quite low. Moreover, PCR-DB also stably amplified the BLV provirus from tumor tissue samples. PCR-DB method exhibited good reproducibility and excellent specificity and is suitable for screening of thousands of cattle, thus serving as a viable alternative to nested PCR and real-time PCR.


Journal of General Virology | 2014

Differences in cellular function and viral protein expression between IgMhigh and IgMlow B-cells in bovine leukemia virus-infected cattle.

Ryoyo Ikebuchi; Satoru Konnai; Tomohiro Okagawa; Asami Nishimori; Ayako Nakahara; Shiro Murata; Kazuhiko Ohashi

Bovine leukemia virus (BLV) induces abnormal B-cell proliferation and B-cell lymphoma in cattle, where the BLV provirus is integrated into the host genome. BLV-infected B-cells rarely express viral proteins in vivo, but short-term cultivation augments BLV expression in some, but not all, BLV-infected B-cells. This observation suggests that two subsets, i.e. BLV-silencing cells and BLV-expressing cells, are present among BLV-infected B-cells, although the mechanisms of viral expression have not been determined. In this study, we examined B-cell markers and viral antigen expression in B-cells from BLV-infected cattle to identify markers that may discriminate BLV-expressing cells from BLV-silencing cells. The proportions of IgM(high) B-cells were increased in blood lymphocytes from BLV-infected cattle. IgM(high) B-cells mainly expressed BLV antigens, whereas IgM(low) B-cells did not, although the provirus load was equivalent in both subsets. Several parameters were investigated in these two subsets to characterize their cellular behaviour. Real-time PCR and microarray analyses detected higher expression levels of some proto-oncogenes (e.g. Maf, Jun and Fos) in IgM(low) B-cells than those in IgM(high) B-cells. Moreover, lymphoma cells obtained from the lymph nodes of 14 BLV-infected cattle contained IgM(low) or IgM(-) B-cells but no IgM(high) B-cells. To our knowledge, this is the first study to demonstrate that IgM(high) B-cells mainly comprise BLV-expressing cells, whereas IgM(low) B-cells comprise a high proportion of BLV-silencing B-cells in BLV-infected cattle.

Collaboration


Dive into the Asami Nishimori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge