Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashaki A. Rouff is active.

Publication


Featured researches published by Ashaki A. Rouff.


Green Chemistry | 2007

Synthetic natural gas from biomass by catalytic conversion in supercritical water

Frédéric Vogel; Maurice Waldner; Ashaki A. Rouff; Stefan Rabe

Biomass can be effectively converted to synthetic natural gas (Bio-SNG) in water near or above its critical point (374 °C, 22.1 MPa). If an active and selective catalyst is used, no tars or char are formed. The onset of the gasification reaction was visualized in sealed quartz capillaries as high pressure batch reactors, by using an optical microscope. By pressure differential analysis of batch experiments, the onset temperature was found around 250 °C, which is much lower than conventional atmospheric gasification processes operating at 800–900 °C. The temporal evolution of the gaseous products in the batch experiments was consistent with a sequential gasification–methanation mechanism, where methane is formed from CO2 and H2. A Ru on carbon catalyst exhibiting excellent long-term stability was tested at 400–500 °C and space velocities up to 33 gHC gcat.−1 h−1 in a continuous test rig at 30 MPa.


Environmental Science & Technology | 2013

Influence of pH on the Reductive Transformation of Birnessite by Aqueous Mn(II)

Joshua P. Lefkowitz; Ashaki A. Rouff; Evert J. Elzinga

We investigated the effect of pH (5.5-8.5) on the mineralogical transformation of hexagonal birnessite induced by reaction with aqueous Mn(II) (50-2200 μM), using batch sorption experiments, X-ray diffraction analyses, X-ray absorption and infrared spectroscopic measurements. Samples reacted at pH < 7.0 exhibited disrupted stacking of birnessite sheets, but no mineralogical transformation products were observed. At pH 7.0 and 7.5, reaction with Mn(II) under anoxic conditions caused reductive transformation of birnessite into manganite (γ-MnOOH), whereas at pH 8.0 and 8.5, conversion into hausmannite (Mn3O4) occurred. Feitknechtite (β-MnOOH) is a major transformation product at low Mn(II) inputs at pH 7.0-8.5, and represents a metastable reaction intermediate that is converted into manganite and possibly hausmannite during further reaction with Mn(II). Thermodynamic calculations suggest that conversion into hausmannite at alkaline pH reflects a kinetic effect where rapid hausmannite precipitation prevents formation of thermodynamically more favorable manganite. In oxic systems, feitknechtite formation due to surface catalyzed oxidation of Mn(II) by O2 increases Mn(II) removal relative to anoxic systems at pH ≥ 7. The results of this study suggest that aqueous Mn(II) is an important control on the mineralogy and reactivity of natural Mn-oxides, particularly in aqueous geochemical environments with neutral to alkaline pH values.


Journal of Hazardous Materials | 2014

Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site

Jinyang Yang; Ya Tang; Kai Yang; Ashaki A. Rouff; Evert J. Elzinga; Jen-How Huang

A series of column leaching experiments were performed to understand the leaching behaviour and the potential environmental risk of vanadium in a Panzhihua soil and vanadium titanomagnetite mine tailings. Results from sequential extraction experiments indicated that the mobility of vanadium in both the soil and the mine tailings was low, with <1% of the total vanadium readily mobilised. Column experiments revealed that only <0.1% of vanadium in the soil and mine tailing was leachable. The vanadium concentrations in the soil leachates did not vary considerably, but decreased with the leachate volume in the mine tailing leachates. This suggests that there was a smaller pool of leachable vanadium in the mine tailings compared to that in the soil. Drought and rewetting increased the vanadium concentrations in the soil and mine tailing leachates from 20μgL(-1) to 50-90μgL(-1), indicating the potential for high vanadium release following periods of drought. Experiments with soil columns overlain with 4, 8 and 20% volume mine tailings/volume soil exhibited very similar vanadium leaching behaviour. These results suggest that the transport of vanadium to the subsurface is controlled primarily by the leaching processes occurring in soils.


Environmental Science & Technology | 2012

Sorption of Chromium with Struvite During Phosphorus Recovery

Ashaki A. Rouff

Struvite (MgNH(4)PO(4)·6H(2)O; MAP) precipitation is a viable means of phosphorus (P) recovery from animal and human wastes. The behavior of metal contaminants such as chromium (Cr) during struvite precipitation, however, requires consideration. Here the influence of both Cr concentration and oxidation state on sorption is assessed. The Cr content of struvite precipitated in the presence of 1-100 μM Cr as Cr(III) (22.3-3030.1 mg/kg) was higher than that of solids from Cr(VI) (4.5-5.1 mg/kg) solutions. For 1-20 μM Cr(III) solids, scanning electron microscopy (SEM) revealed etch pit formation on struvite crystal surfaces, indicative of a surface interaction. The formation of an adsorbate was confirmed by X-ray absorption fine structure spectroscopy (XAFS). At initial concentrations ≥20 μM Cr(III), XAFS confirmed the formation of a Cr(OH)(3)·nH(2)O(am) precipitate. Fourier transform infrared (FT-IR) spectroscopy revealed that both Cr(III) and Cr(VI) sorption resulted in distortion of the PO(4)(3-) tetrahedra in the mineral structure. This, combined with SEM results revealed that even at low sorbed concentrations, the Cr impurity can affect the mineral surface and structure. Thus, the initial Cr concentration and oxidation state in wastes targeted for P recovery will dictate the final Cr content, the mechanism of sorption, and impact on the struvite structure.


Environmental Science & Technology | 2012

Influence of pH and Oxidation State on the Interaction of Arsenic with Struvite During Mineral Formation

Ning Ma; Ashaki A. Rouff

Struvite (MgNH(4)PO(4)·6H(2)O) precipitated from animal and human wastes may be a sustainable source of fertilizer. However, arsenic, present in some wastes, may be removed with struvite. Here the sorption of As with struvite during mineral formation at pH 8-11 was assessed. The yield of struvite increased with pH, and was highest at pH 10. For recovered struvite, XRD indicated reduced crystallinity and particle size, and FT-IR suggested less distortion of phosphate tetrahedra with increased pH. The As impurity did not affect the crystallinity or particle size, but did contribute to phosphate distortion. Sorption of As(V) was observed at all pH values, and was highest at pH 10. As(III) sorption was consistently lower than that of As(V), but increased with pH. XAFS suggested coprecipitation of As(V), and adsorption of As(III) as the potential sorption mechanisms. Solids derived from As(III) solutions exhibited dual mechanisms due to the partial oxidation of As(III) to As(V) in solution prior to sorption. For struvite recovery in the presence of As, optimizing the pH to improve yields may increase the As content. Adsorbed As(III) could be removed prior to fertilizer application, however coprecipitated As(V) will release upon mineral decomposition, linking its cycling to that of phosphorus.


Journal of Physical Chemistry A | 2009

X-ray Absorption Fine Structure Study of the Effect of Protonation on Disorder and Multiple Scattering in Phosphate Solutions and Solids

Ashaki A. Rouff; Stefan Rabe; Maarten Nachtegaal; Frédéric Vogel

Phosphorus K-edge X-ray absorption fine structure (XAFS) was explored as a means to distinguish between aqueous and solid phosphates and to detect changes in phosphate protonation state. Data were collected for H(3)PO(4), KH(2)PO(4), K(2)HPO(4) and K(3)PO(4) solids and solutions and for the more complex phosphates, hydroxylapatite (HAP) and struvite (MAP). The X-ray absorption near-edge structure (XANES) spectra for solid samples are distinguishable from those of solutions by a shoulder at approximately 4.5 eV above the edge, caused by scattering from cation sites. For phosphate species, the intensity of the white line peak increased for solid and decreased for aqueous samples, respectively, with phosphate deprotonation. This was assigned to increasing charge delocalization in solid samples, and the effect of solvating water molecules on charge for aqueous samples. In the extended X-ray absorption fine structure (EXAFS), backscattering from first-shell O atoms dominated the chi(k) spectra. Multiple scattering (MS) via a four-legged P-O(1)-P-O(1)-P collinear path was localized in the lower k region at approximately 3.5 A(-1) and contributed significantly to the beat pattern of the first oscillation. For EXAFS analysis, increasing Debye-Waller factors suggest more disorder in the P-O shell with addition of protons to the crystal structure due to the lengthening effects of P-OH bonds. This disorder produces splitting in the hybridized P 3p-O 2p band in the density of states. For aqueous samples, however, increased protonation reduced the structural disorder within this shell. This was linked to a change from kosmotropic to chaotropic behavior of the phosphate species, with reduced effects of H bonding on structural distortion. The intensity of MS is correlated to the degree of disorder in the P-O shell, with more ordered structures exhibiting enhanced MS. The observed trends in the XAFS data can be used to distinguish between phosphate species in both solid and aqueous samples. This is applicable to many chemical, geochemical and biological systems, and may be an important tool for determining the behavior of phosphate during the hydrothermal gasification of biomass.


Environmental Science & Technology | 2014

Zinc interaction with struvite during and after mineral formation.

Ashaki A. Rouff; Karen M. Juarez

Sorption of Zn with struvite was assessed both during and after mineral formation at pH 9.0 for 1-100 μM (0.065-6.54 mg L(-1)) aqueous Zn. The Zn loadings of recovered solids were lower when Zn was present during struvite precipitation compared to when Zn was added to struvite-bearing solutions. X-ray absorption fine structure spectroscopy confirmed that Zn added to struvite-bearing solutions at concentrations≤5 μM sorbed as both octahedral and tetrahedral complexes (Zn-O 1.98-2.03 Å), with evidence for bidentate configuration (Zn-P 3.18 Å). Bidentate complexes were incorporated into the near-surface structure, contributing to distortion of the struvite ν3 PO4(3-) band in the Fourier transform infrared spectra. At Zn concentrations>5 μM, tetrahedral monodentate adsorbates (Zn-O 1.98 Å) dominated, transitioning to a Zn-phosphate precipitate at 100 μM. When Zn is present during struvite precipitation, octahedral monodentate sorbates detected at 1 μM (Zn-O 2.08-2.10 Å; Zn-P 3.60-3.64 Å) polymerized at 5-50 μM, ultimately forming a Zn-hydroxide precipitate at 100 μM. The lowest initial Zn concentrations (0.065 mg L(-1)) and resultant solid loadings from precipitation experiments (13 mg kg(-1)) are consistent with those reported for struvite recovered from wastewater, suggesting that similar Zn sorption processes may occur in more complex systems.


Journal of Colloid and Interface Science | 2013

Temperature-dependent phosphorus precipitation and chromium removal from struvite-saturated solutions.

Ashaki A. Rouff

The effect of temperature from 25 to 300°C on the precipitation of phosphorus (P) from struvite-saturated (MgNH(4)PO(4)·6H(2)O) solutions was explored. Scanning electron microscopy (SEM) revealed reduced particle size and a change in morphology from elongated to rhombohedral crystals with temperature. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) indicated that at 25°C, the precipitate was struvite, while newberyite (MgHPO(4)·3H(2)O) formed at 100°C, and magnesium pyrophosphate (Mg(2)P(2)O(7)) at 300°C. Increased temperature reduced the association of ammonium and water of crystallization with the solid and increased P polymerization. The behavior of dissolved chromium (Cr) under these conditions was also assessed. Removal of Cr with the solid phase from Cr(III) solutions was observed at all temperatures, whereas removal from Cr(VI) solutions was significant only at 300°C. X-ray absorption fine structure spectroscopy (XAFS) revealed that regardless of initial oxidation state in solution, Cr(III) was associated with the solid, interacting by the adsorption of short-range Cr polymers. Therefore, for struvite-saturated solutions, increasing the temperature changed both the mineralogy of the P phase recovered and enhanced the interaction of otherwise unreactive Cr(VI) with the substrate. These results have implications for the temperature-enhanced recovery of P from wastewater.


Chemosphere | 2013

Heavy Metal Distribution in an Urban Wetland Impacted by Combined Sewer Overflow

Ashaki A. Rouff; Timothy T. Eaton; Antonio Lanzirotti

The heavy metal content and distribution in an urban wetland affected by combined sewer overflow (CSO) discharge during dry conditions was evaluated. Metals identified in the CSO discharge were also measured upstream and downstream of the CSO. Metals were detected in the acid-extractable fraction of the wetland sediments and the roots of Phragmites australis plants. Sediment from the banks of a pool created by the CSO, and from a clay bed upstream were found to be moderately contaminated with Cu, Pb and Zn. Micro X-ray fluorescence (μ-XRF) of Phragmites roots from the CSO banks showed a correlation in the spatial distribution of Fe and Mn, attributed to the formation of mineral plaques on the root surface. Micro X-ray absorption near edge spectroscopy (μ-XANES) revealed that Cu and Zn were complexed with the organic ligands phytate and cysteine. The findings indicated that continuous discharge from the CSO is a source of heavy metals to the wetland. Metals bound to sediments are susceptible to remobilization and subsequent transport, whereas those associated with Phragmites roots may be more effectively sequestered. These observations provide insight into the behavior of heavy metals in urban areas where CSOs discharge into wetlands.


American Journal of Science | 2007

Silurian extension in the Upper Connecticut Valley, United States and the origin of middle Paleozoic basins in the Québec embayment

D. W. Rankin; R. A. Coish; R. D. Tucker; Z. X. Peng; S. A. Wilson; Ashaki A. Rouff

Pre-Silurian strata of the Bronson Hill arch (BHA) in the Upper Connecticut Valley, NH-VT are host to the latest Ludlow Comerford Intrusive Suite consisting, east to west, of a mafic dike swarm with sheeted dikes, and an intrusive complex. The rocks are mostly mafic but with compositions ranging from gabbro to leucocratic tonalite. The suite is truncated on the west by the Monroe fault, a late Acadian thrust that carries rocks of the BHA westward over Silurian-Devonian strata of the Connecticut Valley-Gaspé trough (CVGT). Dikes intrude folded strata with a pre-intrusion metamorphic fabric (Taconian?) but they experienced Acadian deformation. Twenty fractions of zircon and baddeleyite from three sample sites of gabbro-diorite spanning nearly 40 km yield a weighted 207Pb/206Pb age of 419 ± 1 Ma. Greenschist-facies dikes, sampled over a strike distance of 35 km, were tholeiitic basalts formed by partial melting of asthenospheric mantle, with little or no influence from mantle or crustal lithosphere. The dike chemistry is similar to mid-ocean ridge, within-plate, and back-arc basin basalts. Parent magmas originated in the asthenosphere and were erupted through severely thinned lithosphere adjacent to the CVGT. Extensive middle Paleozoic basins in the internides of the Appalachian orogen are restricted to the Québec embayment of the Laurentian rifted margin, and include the CVGT and the Central Maine trough (CMT), separated from the BHA by a Silurian tectonic hinge. The NE-trending Comerford intrusions parallel the CVGT, CMT, and the tectonic hinge, and indicate NW-SE extension. During post-Taconian convergence, the irregular margins of composite Laurentia and Avalon permitted continued collision in Newfoundland (St. Lawrence promontory) and coeval extension in the Québec embayment. Extension may be related to hinge retreat of the northwest directed Brunswick subduction complex and rise of the asthenosphere following slab break-off. An alternative hypothesis is that the basins originated as pull-apart basins between northwest-trending, left-stepping, sinistral strike-slip faults along the southern flanks of the New York and St. Lawrence promontories.

Collaboration


Dive into the Ashaki A. Rouff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Vogel

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Stefan Rabe

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning Ma

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge