Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashenafi Y. Tilahun is active.

Publication


Featured researches published by Ashenafi Y. Tilahun.


PLOS ONE | 2013

Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome.

Eric V. Marietta; Andres Gomez; Carl J. Yeoman; Ashenafi Y. Tilahun; Chad R. Clark; David Luckey; Joseph A. Murray; Bryan A. White; Yogish C. Kudva; Govindarajan Rajagopalan

Human and animal studies strongly suggest that dietary gluten could play a causal role in the etiopathogenesis of type 1 diabetes (T1D). However, the mechanisms have not been elucidated. Recent reports indicate that the intestinal microbiome has a major influence on the incidence of T1D. Since diet is known to shape the composition of the intestinal microbiome, we investigated using non-obese diabetic (NOD) mice whether changes in the intestinal microbiome could be attributed to the pro- and anti-diabetogenic effects of gluten-containing and gluten-free diets, respectively. NOD mice were raised on gluten-containing chows (GCC) or gluten-free chows (GFC). The incidence of diabetes was determined by monitoring blood glucose levels biweekly using a glucometer. Intestinal microbiome composition was analyzed by sequencing 16S rRNA amplicons derived from fecal samples. First of all, GCC-fed NOD mice had the expected high incidence of hyperglycemia whereas NOD mice fed with a GFC had significantly reduced incidence of hyperglycemia. Secondly, when the fecal microbiomes were compared, Bifidobacterium, Tannerella, and Barnesiella species were increased (p = 0.03, 0.02, and 0.02, respectively) in the microbiome of GCC mice, where as Akkermansia species was increased (p = 0.02) in the intestinal microbiomes of NOD mice fed GFC. Thirdly, both of the gluten-free chows that were evaluated, either egg white based (EW-GFC) or casein based (C-GFC), significantly reduced the incidence of hyperglycemia. Interestingly, the gut microbiome from EW-GFC mice was similar to C-GFC mice. Finally, adding back gluten to the gluten-free diet reversed its anti-diabetogenic effect, reduced Akkermansia species and increased Bifidobacterium, Tannerella, and Barnesiella suggesting that the presence of gluten is directly responsible for the pro-diabetogenic effects of diets and it determines the gut microflora. Our novel study thus suggests that dietary gluten could modulate the incidence of T1D by changing the gut microbiome.


Infection and Immunity | 2010

Potent Neutralization of Staphylococcal Enterotoxin B by Synergistic Action of Chimeric Antibodies

Mulualem E. Tilahun; Govindarajan Rajagopalan; Nalini Shah-Mahoney; Rebecca G. Lawlor; Ashenafi Y. Tilahun; Chen Xie; Kannan Natarajan; David H. Margulies; David I. Ratner; Barbara A. Osborne; Richard A. Goldsby

ABSTRACT Staphylococcal enterotoxin B (SEB), a shock-inducing exotoxin synthesized by Staphylococcus aureus, is an important cause of food poisoning and is a class B bioterrorism agent. SEB mediates antigen-independent activation of a major subset of the T-cell population by cross-linking T-cell receptors (TCRs) with class II major histocompatibility complex (MHC-II) molecules of antigen-presenting cells, resulting in the induction of antigen independent proliferation and cytokine secretion by a significant fraction of the T-cell population. Neutralizing antibodies inhibit SEB-mediated T-cell activation by blocking the toxins interaction with the TCR or MHC-II and provide protection against the debilitating effects of this superantigen. We derived and searched a set of monoclonal mouse anti-SEB antibodies to identify neutralizing anti-SEB antibodies that bind to different sites on the toxin. A pair of non-cross-reactive, neutralizing anti-SEB monoclonal antibodies (MAbs) was found, and a combination of these antibodies inhibited SEB-induced T-cell proliferation in a synergistic rather than merely additive manner. In order to engineer antibodies more suitable than mouse MAbs for use in humans, the genes encoding the VL and VH gene segments of a synergistically acting pair of mouse MAbs were grafted, respectively, onto genes encoding the constant regions of human Igκ and human IgG1, transfected into mammalian cells, and used to generate chimeric versions of these antibodies that had affinity and neutralization profiles essentially identical to their mouse counterparts. When tested in cultures of human peripheral blood mononuclear cells or splenocytes derived from HLA-DR3 transgenic mice, the chimeric human-mouse antibodies synergistically neutralized SEB-induced T-cell activation and cytokine production.


PLOS ONE | 2011

Interferon Gamma-Dependent Intestinal Pathology Contributes to the Lethality in Bacterial Superantigen-Induced Toxic Shock Syndrome

Ashenafi Y. Tilahun; Marah Holz; Tsung Teh Wu; Chella S. David; Govindarajan Rajagopalan

Toxic shock syndrome (TSS) caused by the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes is characterized by robust T cell activation, profound elevation in systemic levels of multiple cytokines, including interferon-γ (IFN-γ), followed by multiple organ dysfunction and often death. As IFN-γ possesses pro- as well as anti-inflammatory properties, we delineated its role in the pathogenesis of TSS. Antibody-mediated in vivo neutralization of IFN-γ or targeted disruption of IFN-γ gene conferred significant protection from lethal TSS in HLA-DR3 transgenic mice. Following systemic high dose SEB challenge, whereas the HLA-DR3.IFN-γ+/+ mice became sick and succumbed to TSS, HLA-DR3.IFN-γ−/− mice appeared healthy and were significantly protected from SEB-induced lethality. SEB-induced systemic cytokine storm was significantly blunted in HLA-DR3.IFN-γ−/− transgenic mice. Serum concentrations of several cytokines (IL-4, IL-10, IL-12p40 and IL-17) and chemokines (KC, rantes, eotaxin and MCP-1) were significantly lower in HLA-DR3.IFN-γ−/− transgenic mice. However, SEB-induced T cell expansion in the spleens was unaffected and expansion of SEB-reactive TCR Vβ8+ CD4+ and CD8+ T cells was even more pronounced in HLA-DR3.IFN-γ−/− transgenic mice when compared to HLA-DR3.IFN-γ+/+ mice. A systematic histopathological examination of several vital organs revealed that both HLA-DR3.IFN-γ+/+ and HLA-DR3.IFN-γ−/− transgenic mice displayed comparable severe inflammatory changes in lungs, and liver during TSS. Remarkably, whereas the small intestines from HLA-DR3.IFN-γ+/+ transgenic mice displayed significant pathological changes during TSS, the architecture of small intestines in HLA-DR3.IFN-γ−/− transgenic mice was preserved. In concordance with these histopathological changes, the gut permeability to macromolecules was dramatically increased in HLA-DR3.IFN-γ+/+ but not HLA-DR3.IFN-γ−/− mice during TSS. Overall, IFN-γ seemed to play a lethal role in the immunopathogenesis of TSS by inflicting fatal small bowel pathology. Our study thus identifies the important role for IFN-γ in TSS.


American Journal of Pathology | 2011

Human Leukocyte Antigen Class II Transgenic Mouse Model Unmasks the Significant Extrahepatic Pathology in Toxic Shock Syndrome

Ashenafi Y. Tilahun; Eric V. Marietta; Tsung Teh Wu; Robin Patel; Chella S. David; Govindarajan Rajagopalan

Among the exotoxins produced by Staphylococcus aureus and Streptococcus pyogenes, the superantigens (SAgs) are the most potent T-cell activators known to date. SAgs are implicated in several serious diseases including toxic shock syndrome (TSS), Kawasaki disease, and sepsis. However, the immunopathogenesis of TSS and other diseases involving SAgs are still not completely understood. The commonly used conventional laboratory mouse strains do not respond robustly to SAgs in vivo. Therefore, they must be artificially rendered susceptible to TSS by using sensitizing agents such as d-galactosamine (d-galN), which skews the disease exclusively to the liver and, hence, is not representative of the disease in humans. SAg-induced TSS was characterized using transgenic mice expressing HLA class II molecules that are extremely susceptible to TSS without d-galN. HLA-DR3 transgenic mice recapitulated TSS in humans with extensive multiple-organ inflammation affecting the lung, liver, kidneys, heart, and small intestines. Heavy infiltration with T lymphocytes (both CD4(+) and CD8+), neutrophils, and macrophages was noted. In particular, the pathologic changes in the small intestines were extensive and accompanied by significantly altered absorptive functions of the enterocytes. In contrast to massive liver failure alone in the d-galN sensitization model of TSS, findings of the present study suggest that gut dysfunction might be a key pathogenic event that leads to high morbidity and mortality in humans with TSS.


Journal of Immunology | 2012

Chronic Exposure to Staphylococcal Superantigen Elicits a Systemic Inflammatory Disease Mimicking Lupus

Vaidehi R. Chowdhary; Ashenafi Y. Tilahun; Chad R. Clark; Joseph P. Grande; Govindarajan Rajagopalan

Chronic nasal and skin colonization with superantigen (SAg)-producing Staphylococcus aureus is well documented in humans. Given that trans-mucosal and trans-cutaneous absorption of SAgs can occur, we determined whether chronic exposure to small amounts of SAg per se could activate autoreactive CD4+ and CD8+ T cells and precipitate any autoimmune disease without further external autoantigenic stimulation. Because HLA class II molecules present SAg more efficiently than do mouse MHC class II molecules, HLA-DQ8 transgenic mice were implanted s.c. with mini-osmotic pumps capable of continuously delivering the SAg, staphylococcal enterotoxin B (total of 10 μg/mouse), or PBS over 4 wk. Chronic exposure to staphylococcal enterotoxin B resulted in a multisystem autoimmune inflammatory disease with features similar to systemic lupus erythematosus. The disease was characterized by mononuclear cell infiltration of lungs, liver, and kidneys, accompanied by the production of anti-nuclear Abs and deposition of immune complexes in the renal glomeruli. The inflammatory infiltrates in various organs predominantly consisted of CD4+ T cells bearing TCR Vβ8. The extent of immunopathology was markedly reduced in mice lacking CD4+ T cells and CD28, indicating that the disease is CD4+ T cell mediated and CD28 dependent. The absence of disease in STAT4-deficient, as well as IFN-γ–deficient, HLA-DQ8 mice suggested the pathogenic role of Th1-type cytokines, IL-12 and IFN-γ. In conclusion, our study suggests that chronic exposure to extremely small amounts of bacterial SAg could be an etiological factor for systemic lupus erythematosus.


Molecular Therapy | 2010

Detrimental Effect of the Proteasome Inhibitor, Bortezomib in Bacterial Superantigen- and Lipopolysaccharide-induced Systemic Inflammation

Ashenafi Y. Tilahun; Jayne E. Theuer; Robin Patel; Chella S. David; Govindarajan Rajagopalan

Bacterial superantigen (BSAg)-induced toxic shock syndrome (TSS) and bacterial lipopolysaccharide (LPS)-induced shock are characterized by severe systemic inflammation. As nuclear factor kappaB (NF kappaB) plays an important role in inflammation and bortezomib, a proteasome inhibitor widely used in cancer chemotherapy, is a potent inhibitor of NF kappaB activation, we evaluated the therapeutic and prophylactic use of bortezomib in these conditions using murine models. Bortezomib prophylaxis significantly reduced serum levels of many cytokines and chemokines induced by BSAg. However, at 3 hours, serum level of TNF-a, an important cytokine implicated in TSS, was significantly reduced but not abolished. At 6 hours, there was no difference in the serum TNF-a levels between bortezomib treated and untreated mice challenged with staphylococcal enterotoxin B (SEB). Paradoxically, all mice treated with bortezomib either before or after BSAg challenge succumbed to TSS. Neither bortezomib nor BSAg was lethal if given alone. Serum biochemical parameters and histopathological findings suggested acute liver failure as the possible cause of mortality. Liver tissue from SEB-challenged mice treated with bortezomib showed a significant reduction in NF kappaB activation. Because NF kappaB-dependent antiapoptotic pathways protect hepatocytes from TNF-alpha-induced cell death, inhibition of NF kappaB brought forth by bortezomib in the face of elevated TNF-alpha levels caused by BSAg or LPS is detrimental.


Physiological Genomics | 2009

Early gene expression changes induced by the bacterial superantigen staphylococcal enterotoxin B and its modulation by a proteasome inhibitor

Govindarajan Rajagopalan; Ashenafi Y. Tilahun; Yan W. Asmann; Chella S. David

Toxic shock syndrome (TSS) is an acute, serious systemic illness caused by bacterial superantigens. Nonavailability of a suitable animal model until recently has hampered an in-depth understanding of the pathogenesis of TSS. In the current study, we characterized the early molecular events underlying TSS using our HLA-DR3 transgenic mouse model. Gene expression profiling using DNA microarrays identified a rapid and significant upregulation of several pro- as well as anti-inflammatory mediators, many of which have never been previously described in TSS. In vivo administration of staphylococcal enterotoxin B (SEB) led to an increase in the expression of Th0- (IL-2, 240-fold); Th1- (IFN-gamma, 360-fold; IL-12, 8-fold); Th2- (IL-4, 53-fold; IL-5, 4-fold) as well as Th17-type cytokines (IL-21, 19-fold; IL-17, 5-fold). The immunoregulatory cytokines (IL-6, 700-fold; IL-10, 18-fold); CC chemokines (such as CCL 2, 11, 3, 24, 17, 12, 7), CXC chemokines (such as CXCL 1, 2, 5, 11, 10, 19); and several proteases (matrix metalloproteinases 13, 8, 3, and 9) were also upregulated. Serum levels of several of these cytokines/chemokines were also significantly elevated. Pathway analyses revealed significant modulation in a variety of biochemical and cellular functions, providing molecular insights into the pathogenesis of TSS. Administration of bortezomib, a clinically approved proteasome inhibitor capable of blocking NF-kappaB pathway, was able to significantly modulate the expression of a variety of genes induced by SEB. Thus, our study showed that TSS is a complex process and emphasized the potential of use of bortezomib in the therapy of superantigen-induced TSS.


Journal of Immunology | 2014

Systemic Inflammatory Response Elicited by Superantigen Destabilizes T Regulatory Cells, Rendering Them Ineffective during Toxic Shock Syndrome

Ashenafi Y. Tilahun; Vaidehi R. Chowdhary; Chella S. David; Govindarajan Rajagopalan

Life-threatening infections caused by Staphylococcus aureus, particularly the community-acquired methicillin-resistant strains of S. aureus, continue to pose serious problems. Greater virulence and increased pathogenicity of certain S. aureus strains are attributed to higher prevalence of exotoxins. Of these exotoxins, the superantigens (SAg) are likely most pathogenic because of their ability to rapidly and robustly activate the T cells even in extremely small quantities. Therefore, countering SAg-mediated T cell activation using T regulatory cells (Tregs) might be beneficial in diseases such as toxic shock syndrome (TSS). As the normal numbers of endogenous Tregs in a typical host are insufficient, we hypothesized that increasing the Treg numbers by administration of IL-2/anti–IL-2 Ab immune complexes (IL2C) or by adoptive transfer of ex vivo expanded Tregs might be more effective in countering SAg-mediated immune activation. HLA-DR3 transgenic mice that closely recapitulate human TSS were treated with IL2C to increase endogenous Tregs or received ex vivo expanded Tregs. Subsequently, they were challenged with SAg to induce TSS. Analyses of various parameters reflective of TSS (serum cytokine/chemokine levels, multiple organ pathology, and SAg-induced peripheral T cell expansion) indicated that increasing the Tregs failed to mitigate TSS. On the contrary, serum IFN-γ levels were increased in IL2C-treated mice. Exploration into the reasons behind the lack of protective effect of Tregs revealed IL-17 and IFN-γ–dependent loss of Tregs during TSS. In addition, significant upregulation of glucocorticoid-induced TNFR family-related receptor on conventional T cells during TSS could render them resistant to Treg-mediated suppression, contributing to failure of Treg-mediated immune regulation.


PLOS ONE | 2011

Chimeric Anti-Staphylococcal Enterotoxin B Antibodies and Lovastatin Act Synergistically to Provide In Vivo Protection against Lethal Doses of SEB

Mulualem E. Tilahun; Alan Kwan; Kannan Natarajan; Megan Quinn; Ashenafi Y. Tilahun; Chen Xie; David H. Margulies; Barbara A. Osborne; Richard A. Goldsby; Govindarajan Rajagopalan

Staphylococcal enterotoxin B (SEB) is one of a family of toxins secreted by Staphylococcus aureus that act as superantigens, activating a large fraction of the T-cell population and inducing production of high levels of inflammatory cytokines that can cause toxic shock syndrome (TSS) and death. Extracellular engagement of the TCR of T-cells and class II MHC of antigen presenting cells by SEB triggers the activation of many intracellular signaling processes. We engineered chimeric antibodies to block the extracellular engagement of cellular receptors by SEB and used a statin to inhibit intracellular signaling. Chimeric human-mouse antibodies directed against different neutralizing epitopes of SEB synergistically inhibited its activation of human T-cells in vitro. In the in vivo model of lethal toxic shock syndrome (TSS) in HLA-DR3 transgenic mice, two of these antibodies conferred significant partial protection when administered individually, but offered complete protection in a synergistic manner when given together. Similarly, in vivo, lovastatin alone conferred only partial protection from TSS similar to single anti-SEB antibodies. However, used in combination with one chimeric neutralizing anti-SEB antibody, lovastatin provided complete protection against lethal TSS in HLA-DR3 transgenic mice. These experiments demonstrate that in vivo protection against lethal doses of SEB can be achieved by a statin of proven clinical safety and chimeric human-mouse antibodies, agents now widely used and known to be of low immunogenicity in human hosts.


Microbes and Infection | 2012

The impact of tacrolimus on the immunopathogenesis of staphylococcal enterotoxin-induced systemic inflammatory response syndrome and pneumonia

Ashenafi Y. Tilahun; Melissa J. Karau; Chad R. Clark; Robin Patel; Govindarajan Rajagopalan

Staphylococcal superantigens (SAg) are a family of potent exotoxins produced by Staphylococcus aureus. They play an important role in the pathogenesis of staphylococcal shock and pneumonia by causing a robust activation of the immune system and eliciting a strong surge in systemic cytokine and chemokine levels. Given the biological functions of SAg, we evaluated the efficacy of tacrolimus, a potent immunosuppressive agent, in the prophylaxis and therapy of staphylococcal TSS and pneumonia using human leukocyte antigen (HLA)-DR3 transgenic mice. Tacrolimus significantly inhibited staphylococcal SAg induced T cell activation in vitro. In vivo, tacrolimus significantly suppressed the SAg-induced elevation in serum cytokine and chemokine levels when given prophylactically, when administered immediately or even 2 h following systemic SAg challenge. Paradoxically, neither the prophylactic nor post-exposure treatment with tacrolimus protected mice from lethal SAg-induced TSS. A closer examination revealed that tacrolimus failed to suppress SAg-induced T cell proliferation and systemic pathology, including gut dysfunction. Tacrolimus also failed to protect from lethal pneumonia induced by a SAg-producing S. aureus strain. Thus, our study showed that even though T cell activation by SAg plays a major role in the immunopathogenesis of TSS and pneumonia, tacrolimus alone has no beneficial effect.

Collaboration


Dive into the Ashenafi Y. Tilahun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara A. Osborne

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge