Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashlee V. Moses is active.

Publication


Featured researches published by Ashlee V. Moses.


Journal of Experimental Medicine | 2003

Fractalkine Preferentially Mediates Arrest and Migration of CD16+ Monocytes

Petronela Ancuta; Ravi M. Rao; Ashlee V. Moses; Andrew Mehle; Sunil K. Shaw; F. William Luscinskas; Dana Gabuzda

CD16+ monocytes represent 5–10% of peripheral blood monocytes in normal individuals and are dramatically expanded in several pathological conditions including sepsis, human immunodeficiency virus 1 infection, and cancer. CD16+ monocytes produce high levels of proinflammatory cytokines and may represent dendritic cell precursors in vivo. The mechanisms that mediate the recruitment of CD16+ monocytes into tissues remain unknown. Here we investigate molecular mechanisms of CD16+ monocyte trafficking and show that migration of CD16+ and CD16− monocytes is mediated by distinct combinations of adhesion molecules and chemokine receptors. In contrast to CD16− monocytes, CD16+ monocytes expressed high CX3CR1 and CXCR4 but low CCR2 and CD62L levels and underwent efficient transendo-thelial migration in response to fractalkine (FKN; FKN/CX3CL1) and stromal-derived factor 1α (CXCL12) but not monocyte chemoattractant protein 1 (CCL2). CD16+ monocytes arrested on cell surface–expressed FKN under flow with higher frequency compared with CD16− monocytes. These results demonstrate that FKN preferentially mediates arrest and migration of CD16+ monocytes and suggest that recruitment of this proinflammatory monocyte subset to vessel walls via the CX3CR1-FKN pathway may contribute to vascular and tissue injury during pathological conditions.


American Journal of Pathology | 1999

Blood-Brain Barrier Tight Junction Disruption in Human Immunodeficiency Virus-1 Encephalitis

Linda M. Dallasta; Liubomir A. Pisarov; James E. Esplen; Jonette Werley; Ashlee V. Moses; Jay A. Nelson; Cristian L. Achim

The blood-brain barrier (BBB) plays a critical role in regulating cell trafficking through the central nervous system (CNS) due to several unique anatomical features, including the presence of interendothelial tight junctions that form impermeable seals between the cells. Previous studies have demonstrated BBB perturbations during human immunodeficiency virus encephalitis (HIVE); however, the basis of these permeability changes and its relationship to infiltration of human immunodeficiency virus type 1 (HIV-1)-infected monocytes, a critical event in the pathogenesis of the disease, remains unclear. In this study, we examined CNS tissue from HIV-1-seronegative patients and HIV-1-infected patients, both with and without encephalitis, for alterations in BBB integrity via immunohistochemical analysis of the tight junction membrane proteins, occludin and zonula occludens-1 (ZO-1). Significant tight junction disruption (P < 0.001), as demonstrated by fragmentation or absence of immunoreactivity for occludin and ZO-1, was observed within vessels from subcortical white matter, basal ganglia, and, to a lesser extent, cortical gray matter in patients who died with HIVE. These alterations were also associated with accumulation of activated, HIV-1-infected brain macrophages, fibrinogen leakage, and marked astrocytosis. In contrast, no significant changes (P > 0.05) were observed in cerebellar tissue from patients with HIVE compared to HIV-seronegative patients or HIV-1-infected patients without encephalitis. Our findings demonstrate that tight junction disruption is a key feature of HIVE that occurs in regions of histopathological alterations in association with perivascular accumulation of activated HIV-1-infected macrophages, serum protein extravasation, and marked astrocytosis. We propose that disruption of this key BBB structure serves as the main route of HIV-1-infected monocyte entry into the CNS.


Journal of Virology | 2009

Vpu Directs the Degradation of the Human Immunodeficiency Virus Restriction Factor BST-2/Tetherin via a βTrCP-Dependent Mechanism

Janet L. Douglas; Kasinath Viswanathan; Matthew N. McCarroll; Jean K. Gustin; Klaus Früh; Ashlee V. Moses

ABSTRACT The primary roles attributed to the human immunodeficiency virus type 1 (HIV-1) Vpu protein are the degradation of the viral receptor CD4 and the enhancement of virion release. With regard to CD4 downregulation, Vpu has been shown to act as an adapter linking CD4 with the ubiquitin-proteasome machinery via interaction with the F-box protein βTrCP. To identify additional cellular βTrCP-dependent Vpu targets, we performed quantitative proteomics analyses using the plasma membrane fraction of HeLa cells expressing either wild-type Vpu or a Vpu mutant (S52N/S56N) that does not bind βTrCP. One cellular protein, BST-2 (CD317), was consistently underrepresented in the membrane proteome of cells expressing wild-type Vpu compared to the proteome of cells expressing the Vpu mutant. To verify the biological relevance of this phenotype for HIV pathogenesis, we showed that in T cells infected with HIV-1, BST-2 downregulation occurred in a Vpu-dependent manner. Recently, BST-2 has been identified as the interferon-inducible cellular factor Tetherin, which restricts HIV virion release in the absence of Vpu. We address here the unresolved mechanism of Vpu-mediated BST-2 downregulation. Our data show that the presence of wild-type Vpu reduced cell surface and total steady-state BST-2 levels, whereas that of the mutant Vpu had no effect. In addition, treatment of cells with the lysosome acidification inhibitor concanamycin A, but not treatment with the proteasome inhibitor MG132, reduced BST-2 downregulation by wild-type Vpu, thereby suggesting that the presence of Vpu leads to the degradation of BST-2 via an endosome-lysosome degradation pathway. The importance of βTrCP in this process was confirmed by demonstrating that in the absence of βTrCP, BST-2 levels were restored despite the presence of Vpu. Taken together, these data support the hypothesis that, in similarity to its role in CD4 degradation, Vpu acts as an adapter molecule linking BST-2 to the cellular ubiquitination machinery via βTrCP. However, in contrast to the proteasome-dependent degradation of CD4, which occurs in the endoplasmic reticulum, Vpu appears to interact with BST-2 in the trans-Golgi network or in early endosomes, leading to lysosomal degradation of BST-2. Via this action, Vpu could counter the tethering function of BST-2, resulting in enhanced HIV-1 virion release. Interestingly, although HIV-2 does not express Vpu, an isolate known to exhibit enhanced viral egress can downregulate surface BST-2 by an as-yet-unknown mechanism that does not appear to involve degradation. Understanding the molecular mechanisms of both Vpu-dependent and -independent mediated antagonism of BST-2 will be critical for therapeutic strategies that exploit this novel viral function.


Journal of Virology | 2009

Molecular Mechanism of BST2/Tetherin Downregulation by K5/MIR2 of Kaposi's Sarcoma-Associated Herpesvirus

Mandana Mansouri; Kasinath Viswanathan; Janet L. Douglas; Jennie Hines; Jean K. Gustin; Ashlee V. Moses; Klaus Früh

ABSTRACT K3/MIR1 and K5/MIR2 of Kaposis sarcoma-associated herpesvirus (KSHV) are viral members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family and contribute to viral immune evasion by directing the conjugation of ubiquitin to immunostimulatory transmembrane proteins. In a quantitative proteomic screen for novel host cell proteins downregulated by viral immunomodulators, we previously observed that K5, as well as the human immunodeficiency virus type 1 (HIV-1) immunomodulator VPU, reduced steady-state levels of bone marrow stromal cell antigen 2 (BST2; also called CD317 or tetherin), suggesting that BST2 might be a novel substrate of K5 and VPU. Recent work revealed that in the absence of VPU, HIV-1 virions are tethered to the plasma membrane in BST2-expressing HeLa cells. By targeting BST2, K5 might thus similarly overcome an innate antiviral host defense mechanism. Here we establish that despite its type II transmembrane topology and carboxy-terminal glycosylphosphatidylinositol (GPI) anchor, BST2 represents a bona fide target of K5 that is downregulated during primary infection by and reactivation of KSHV. Upon exit of the protein from the endoplasmic reticulum, lysines in the short amino-terminal domain of BST2 are ubiquitinated by K5, resulting in rapid degradation of BST2. Ubiquitination of BST2 is required for degradation, since BST2 lacking cytosolic lysines was K5 resistant and ubiquitin depletion by proteasome inhibitors restored BST2 surface expression. Thus, BST2 represents the first type II transmembrane protein targeted by K5 and the first example of a protein that is both ubiquitinated and GPI linked. We further demonstrate that KSHV release is decreased in the absence of K5 in a BST2-dependent manner, suggesting that K5 contributes to the evasion of intracellular antiviral defense programs.


PLOS Pathogens | 2013

IRF-3, IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid Dendritic Cells Downstream of MAVS Signaling

Helen M. Lazear; Alissa M. Lancaster; Courtney Wilkins; Mehul S. Suthar; Albert C. Huang; Sarah C. Vick; Lisa Clepper; Larissa B. Thackray; Margaret M. Brassil; Herbert W. Virgin; Janko Nikolich-Zugich; Ashlee V. Moses; Michael Gale; Klaus Früh; Michael S. Diamond

Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN) induction and IFN stimulated gene (ISG) expression, Irf3−/−×Irf7−/− double knockout (DKO) myeloid dendritic cells (mDC) produce relatively normal levels of IFN-β after viral infection. We generated Irf3−/−×Irf5−/−×Irf7−/− triple knockout (TKO) mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV) and murine norovirus), TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar−/−). In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT), DKO, TKO, or Ifnar−/− mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs−/− mDC. The relative equivalence of TKO and Mavs−/− responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5.


Journal of Virology | 2002

Kaposi's Sarcoma-Associated Herpesvirus-Induced Upregulation of the c-kit Proto-Oncogene, as Identified by Gene Expression Profiling, Is Essential for the Transformation of Endothelial Cells

Ashlee V. Moses; Michael A. Jarvis; Camilo Raggo; Yolanda C. Bell; Rebecca Ruhl; B. G. Mattias Luukkonen; Diana J. Griffith; Cecily L. Wait; Brian J. Druker; Michael C. Heinrich; Jay A. Nelson; Klaus Früh

ABSTRACT Kaposis sarcoma (KS), the most frequent malignancy afflicting AIDS patients, is characterized by spindle cell formation and vascularization. Infection with KS-associated herpesvirus (KSHV) is consistently observed in all forms of KS. Spindle cell formation can be replicated in vitro by infection of dermal microvascular endothelial cells (DMVEC) with KSHV. To study the molecular mechanism of this transformation, we compared RNA expression profiles of KSHV-infected and mock-infected DMVEC. Induction of several proto-oncogenes was observed, particularly the receptor tyrosine kinase c-kit. Consistent with increased c-Kit expression, KHSV-infected DMVEC displayed enhanced proliferation in response to the c-Kit ligand, stem cell factor (SCF). Inhibition of c-Kit activity with either a pharmacological inhibitor of c-Kit (STI 571) or a dominant-negative c-Kit protein reversed SCF-dependent proliferation. Importantly, inhibition of c-Kit signal transduction reversed the KSHV-induced morphological transformation of DMVEC. Furthermore, overexpression studies showed that c-Kit was sufficient to induce spindle cell formation. Together, these data demonstrate an essential role for c-Kit in KS tumorigenesis and reveal a target for pharmacological intervention.


Cancer Research | 2005

Novel Cellular Genes Essential for Transformation of Endothelial Cells by Kaposi's Sarcoma–Associated Herpesvirus

Camilo Raggo; Rebecca Ruhl; Shane C. McAllister; Henry B. Koon; Bruce J. Dezube; Klaus Früh; Ashlee V. Moses

Kaposis sarcoma-associated herpesvirus (KSHV) is involved in the development of lymphoproliferative diseases and Kaposis sarcoma. The oncogenicity of this virus is reflected in vitro by its ability to transform B cells and endothelial cells. Infection of dermal microvascular endothelial cells (DMVEC) transforms the cells from a cobblestone-like monolayer to foci-forming spindle cells. This transformation is accompanied by dramatic changes in the cellular transcriptome. Known oncogenes, such as c-Kit, are among the KSHV-induced host genes. We previously showed that c-Kit is an essential cellular component of the KSHV-mediated transformation of DMVEC. Here, we test the hypothesis that the transformation process can be used to discover novel oncogenes. When expression of a panel of KSHV-induced cellular transcripts was inhibited with antisense oligomers, we observed inhibition of DMVEC proliferation and foci formation using antisense molecules to RDC1 and Neuritin. We further showed that transformation of KSHV-infected DMVEC was inhibited by small interfering RNA directed at RDC1 or Neuritin. Ectopic expression of Neuritin in NIH 3T3 cells resulted in changes in cell morphology and anchorage-independent growth, whereas RDC1 ectopic expression significantly increased cell proliferation. In addition, both RDC1- and Neuritin-expressing cells formed tumors in nude mice. RDC1 is an orphan G protein-coupled receptor, whereas Neuritin is a growth-promoting protein known to mediate neurite outgrowth. Neither gene has been previously implicated in tumorigenesis. Our data suggest that KSHV-mediated transformation involves exploitation of the hitherto unrealized oncogenic properties of RDC1 and Neuritin.


Current Topics in Microbiology and Immunology | 2008

Mechanisms of Cytomegalovirus-Accelerated Vascular Disease: Induction of Paracrine Factors That Promote Angiogenesis and Wound Healing

Daniel N. Streblow; Jerome Dumortier; Ashlee V. Moses; Susan L. Orloff; Jay A. Nelson

Human cytomegalovirus (HCMV) is associated with the acceleration of a number of vascular diseases such as atherosclerosis, restenosis, and transplant vascular sclerosis (TVS). All of these diseases are the result of either mechanical or immune-mediated injury followed by inflammation and subsequent smooth muscle cell (SMC) migration from the vessel media to the intima and proliferation that culminates in vessel narrowing. A number of epidemiological and animal studies have demonstrated that CMV significantly accelerates TVS and chronic rejection (CR) in solid organ allografts. In addition, treatment of human recipients and animals alike with the antiviral drug ganciclovir results in prolonged survival of the allograft, indicating that CMV replication is a requirement for acceleration of disease. However, although virus persists in the allograft throughout the course of disease, the number of directly infected cells does not account for the global effects that the virus has on the acceleration of TVS and CR. Recent investigations of up- and downregulated cellular genes in infected allografts in comparison to native heart has demonstrated that rat CMV (RCMV) upregulates genes involved in wound healing (WH) and angiogenesis (AG). Consistent with this result, we have found that supernatants from HCMV-infected cells (HCMV secretome) induce WH and AG using in vitro models. Taken together, these findings suggest that one mechanism for HCMV acceleration of TVS is mediated through induction of secreted cytokines and growth factors from virus-infected cells that promote WH and AG in the allograft, resulting in the acceleration of TVS. We review here the ability of CMV infection to alter the local environment by producing cellular factors that act in a paracrine fashion to enhance WH and AG processes associated with the development of vascular disease, which accelerates chronic allograft rejection.


PLOS Pathogens | 2010

The great escape: viral strategies to counter BST-2/tetherin.

Janet L. Douglas; Jean K. Gustin; Kasinath Viswanathan; Mandana Mansouri; Ashlee V. Moses; Klaus Früh

The interferon-induced BST-2 protein has the unique ability to restrict the egress of HIV-1, Kaposis sarcoma–associated herpesvirus (KSHV), Ebola virus, and other enveloped viruses. The observation that virions remain attached to the surface of BST-2-expressing cells led to the renaming of BST-2 as “tetherin”. However, viral proteins such as HIV-1 Vpu, simian immunodeficiency virus Nef, and KSHV K5 counteract BST-2, thereby allowing mature virions to readily escape from infected cells. Since the anti-viral function of BST-2 was discovered, there has been an explosion of research into several aspects of this intriguing interplay between host and virus. This review focuses on recent work addressing the molecular mechanisms involved in BST-2 restriction of viral egress and the species-specific countermeasures employed by various viruses.


AIDS | 2000

The restricted cellular host range of human herpesvirus 8

David J. Blackbourn; Evelyne T. Lennette; Barbara Klencke; Ashlee V. Moses; Bala Chandran; Mark Weinstein; Richard G. Glogau; Marlys H. Witte; Dennis L. Way; Tim Kutzkey; Brian Herndier; Jay A. Levy

DesignA selection of primary and transformed cell types were evaluated for their susceptibility to infection with human herpesvirus 8 (HHV-8)/Kaposis sarcoma- associated herpesvirus. MethodsSources of HHV-8 included Kaposis sarcoma lesion punch biopsies that were either cocultured directly with target cells or that were first cocultured with human lymphocytes to derive HHV-8-containing fluids that were inoculated onto target cells. HHV-8 was also obtained from primary effusion lymphoma-derived cell lines. Techniques to detect infection included the PCR, immunofluorescence assays and in situ hybridization. ResultsSusceptible cells included human umbilical cord blood mononuclear cells (UCMC), adult CD19 B cells, macrophages and certain endothelial cells of human and animal origin, including some that are transformed with human papilloma virus type 16 E6 and E7 genes. The infection of lymphocytes did not yield established lymphoblastoid cell lines (LCL) and virus infection persisted for only 4–7 days. However, long-term HHV-8 infection of UCMC could be achieved by coinfection with Epstein–Barr virus. HHV-8 could also infect UCMC LCL recently derived by Epstein–Barr virus transformation, but long-established LCL could not be infected with HHV-8. ConclusionsThese data provide further biological evidence in cell culture for the limited cellular host range of HHV-8 to CD19 B cells, macrophages, and certain endothelial cells.

Collaboration


Dive into the Ashlee V. Moses's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge