Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashlesh K. Murthy is active.

Publication


Featured researches published by Ashlesh K. Murthy.


Infection and Immunity | 2007

Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production.

Ashlesh K. Murthy; James P. Chambers; Patricia A. Meier; Guangming Zhong; Bernard P. Arulanandam

ABSTRACT There is currently no licensed vaccine against Chlamydia trachomatis, the leading cause of sexually transmitted bacterial disease worldwide. Conventional vaccination attempts using surface-exposed chlamydial antigens have achieved only partial success. We have employed a novel vaccination strategy using a secreted protein, chlamydial protease-like activity factor (CPAF), which has been shown to degrade host major histocompatibility complex transcription factors and keratin-8 and therefore may allow immune evasion and establishment of a productive infection. Intranasal immunization using recombinant CPAF (rCPAF) plus interleukin-12 (IL-12) (rCPAF+IL-12 immunization) was used to assess the protective immunity against genital Chlamydia muridarum infection in BALB/c mice. rCPAF+IL-12 immunization induced robust gamma interferon (IFN-γ) production and minimal IL-4 production by splenocytes upon in vitro recall with rCPAF. The total and immunoglobulin G2a (IgG2a) anti-rCPAF antibody levels in serum were significantly elevated after rCPAF+IL-12 vaccination, as were the total antibody, IgG2a, and IgA levels in bronchoalveolar lavage and vaginal fluids when the animals were compared to animals that received rCPAF alone. rCPAF+IL-12-vaccinated mice displayed significantly reduced bacterial shedding upon chlamydial challenge and accelerated resolution of infection compared to mock-immunized (phosphate-buffered saline) animals. Moreover, rCPAF+IL-12-immunized animals exhibited protection against pathological consequences of chlamydial infection, including the development of hydrosalpinx and oviduct dilatation. This vaccination regimen also reduced the development of fibrosis and the influx of neutrophils into the upper genital tract when the animals were compared to mock-immunized (phosphate-buffered saline) animals after bacterial challenge. rCPAF+IL-12-mediated resolution of the bacterial infection and protection against Chlamydia-induced inflammatory disease were highly dependent on endogenous IFN-γ production. Together, these results demonstrate that secreted chlamydial antigens may be novel vaccine candidates to induce protective immunity.


Vaccine | 2014

Peptide Vaccine: Progress and Challenges

Weidang Li; Medha Joshi; Smita Singhania; Kyle H. Ramsey; Ashlesh K. Murthy

Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.


Infection and Immunity | 2011

Tumor necrosis factor alpha production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum Infection

Ashlesh K. Murthy; Weidang Li; Bharat K R Chaganty; Sangamithra Kamalakaran; M. Neal Guentzel; J. Seshu; Thomas G. Forsthuber; Guangming Zhong; Bernard P. Arulanandam

ABSTRACT The immunopathogenesis of Chlamydia trachomatis-induced oviduct pathological sequelae is not well understood. Mice genetically deficient in perforin (perforin−/− mice) or tumor necrosis factor alpha (TNF-α) production (TNF-α−/− mice) displayed comparable vaginal chlamydial clearance rates but significantly reduced oviduct pathology (hydrosalpinx) compared to that of wild-type mice. Since both perforin and TNF-α are effector mechanisms of CD8+ T cells, we evaluated the role of CD8+ T cells during genital Chlamydia muridarum infection and oviduct sequelae. Following vaginal chlamydial challenge, (i) mice deficient in TAP I (and therefore the major histocompatibility complex [MHC] I pathway and CD8+ T cells), (ii) wild-type mice depleted of CD8+ T cells, and (iii) mice genetically deficient in CD8 (CD8−/− mice) all displayed similar levels of vaginal chlamydial clearance but significantly reduced hydrosalpinx, compared to those of wild-type C57BL/6 mice, suggesting a role for CD8+ T cells in chlamydial pathogenesis. Repletion of CD8−/− mice with wild-type or perforin−/−, but not TNF-α−/−, CD8+ T cells at the time of challenge restored hydrosalpinx to levels observed in wild-type C57BL/6 mice, suggesting that TNF-α production from CD8+ T cells is important for pathogenesis. Additionally, repletion of TNF-α−/− mice with TNF-α+/+ CD8+ T cells significantly enhanced the incidence of hydrosalpinx and oviduct dilatation compared to those of TNF-α−/− mice but not to the levels found in wild-type mice, suggesting that TNF-α production from CD8+ T cells and non-CD8+ cells cooperates to induce optimal oviduct pathology following genital chlamydial infection. These results provide compelling new evidence supporting the contribution of CD8+ T cells and TNF-α production to Chlamydia-induced reproductive tract sequelae.


Journal of Immunology | 2008

Antigen-Specific CD4+ T Cells Produce Sufficient IFN-γ to Mediate Robust Protective Immunity against Genital Chlamydia muridarum Infection

Weidang Li; Ashlesh K. Murthy; M. Neal Guentzel; J. Seshu; Thomas G. Forsthuber; Guangming Zhong; Bernard P. Arulanandam

Chlamydia has been shown to evade host-specific IFN-γ-mediated bacterial killing; however, IFN-γ-deficient mice exhibit suboptimal late phase vaginal Chlamydia muridarum clearance, greater dissemination, and oviduct pathology. These findings introduce constraints in understanding results from murine chlamydial vaccination studies in context of potential implications to humans. In this study, we used mice deficient in either IFN-γ or the IFN-γ receptor for intranasal vaccination with a defined secreted chlamydial Ag, chlamydial protease-like activity factor (CPAF), plus CpG and examined the role of IFN-γ derived from adoptively transferred Ag-specific CD4+ T cells in protective immunity against genital C. muridarum infection. We found that early Ag-specific IFN-γ induction and CD4+ T cell infiltration correlates with the onset of genital chlamydial clearance. Adoptively transferred IFN-γ competent CPAF-specific CD4+ T cells failed to enhance the resolution of genital chlamydial infection within recipient IFN-γ receptor-deficient mice. Conversely, IFN-γ production from adoptively transferred CPAF-specific CD4+ T cells was sufficient in IFN-γ-deficient mice to induce early resolution of infection and reduction of subsequent pathology. These results provide the first direct evidence that enhanced anti-C. muridarum protective immunity induced by Ag-specific CD4+ T cells is dependent upon IFN-γ signaling and that such cells produce sufficient IFN-γ to mediate the protective effects. Additionally, MHC class II pathway was sufficient for induction of robust protective anti-C. muridarum immunity. Thus, targeting soluble candidate Ags via MHC class II to CD4+ T cells may be a viable vaccine strategy to induce optimal IFN-γ production for effective protective immunity against human genital chlamydial infection.


Infection and Immunity | 2006

Chlamydial Protease-Like Activity Factor Induces Protective Immunity against Genital Chlamydial Infection in Transgenic Mice That Express the Human HLA-DR4 Allele

Ashlesh K. Murthy; Yu Cong; Cathi Murphey; M. Neal Guentzel; Thomas G. Forsthuber; Guangming Zhong; Bernard P. Arulanandam

ABSTRACT There is no licensed vaccine available against Chlamydia trachomatis, the leading cause of bacterial sexually transmitted disease. We have found that intranasal immunization with recombinant chlamydial protease-like activity factor (CPAF) induces CD4+ T-cell- and gamma interferon (IFN-γ)-dependent protective immunity against murine genital chlamydial infection, thus making CPAF a viable vaccine candidate for further characterization. HLA-DR4 is the predominant allele involved in chlamydial antigen presentation to CD4+ T cells in humans. We used engineered mice that lack endogenous major histocompatibility complex class II (MHC-II) alleles but express a human HLA allele (HLA-DR4 transgenic [tg] mice) to examine primary immune and CPAF-mediated responses against genital Chlamydia muridarum challenge. Upon primary bacterial exposure, HLA-DR4 tg mice developed Chlamydia-specific IFN-γ and antibody production and resolved the infection within 30 days, similar to challenged conventional C57BL/6 animals. Moreover, C. muridarum-challenged HLA-DR4 tg mice exhibited CPAF-specific antibody and IFN-γ production. Upon CPAF-plus-interleukin-12 (IL-12) vaccination, HLA-DR4 tg animals exhibited robust CPAF-specific IFN-γ production and elevated titers of anti-CPAF total antibody and immunoglobulin G2a (IgG2a) and lower titers of IgG2b and IgG1 antibodies. HLA-DR4 tg and C57BL/6 mice vaccinated with CPAF plus IL-12 resolved the primary genital chlamydial infection significantly earlier than mock-immunized animals, whereas similarly vaccinated MHC class II-deficient mice displayed minimal antigen-specific immune responses and failed to resolve the infection even at 30 days postchallenge. Together, these results demonstrate the importance of human HLA-DR4 molecules in the recognition and presentation of CPAF epitopes, leading to the generation of protective antichlamydial immunity and making these mice a valuable model for mapping HLA-DR4-restricted chlamydial epitopes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Mast cells inhibit intramacrophage Francisella tularensis replication via contact and secreted products including IL-4

Jyothi M. Ketavarapu; Annette R. Rodriguez; Jieh Juen Yu; Yu Cong; Ashlesh K. Murthy; Thomas G. Forsthuber; M. Neal Guentzel; Karl E. Klose; Bernard P. Arulanandam

Francisella tularensis is an intracellular, Gram-negative bacterium that is the causative agent of pulmonary tularemia. The pathogenesis and mechanisms related to innate resistance against F. tularensis are not completely understood. Mast cells are strategically positioned within mucosal tissues, the major interface with the external environment, to initiate innate responses at the site of infection. Mast cell numbers in the cervical lymph nodes and the lungs progressively increased as early as 48 h after intranasal F. tularensis live vaccine strain (LVS) challenge. We established a primary bone marrow-derived mast cell–macrophage coculture system and found that mast cells significantly inhibit F. tularensis LVS uptake and growth within macrophages. Importantly, mice deficient in either mast cells or IL-4 receptor displayed greater susceptibility to the infection when compared with corresponding wild-type animals. Contact-dependent events and secreted products including IL-4 from mast cells, and IL-4 production from other cellular sources, appear to mediate the observed protective effects. These results demonstrate a previously unrecognized role for mast cells and IL-4 and provide a new dimension to our understanding of the innate immune mechanisms involved in controlling intramacrophage Francisella replication.


Journal of Gastroenterology and Hepatology | 2006

Contribution of polymeric immunoglobulin receptor to regulation of intestinal inflammation in dextran sulfate sodium-induced colitis

Ashlesh K. Murthy; Candice N. Dubose; Jeffrey A. Banas; Jacqueline J. Coalson; Bernard P. Arulanandam

Background:  Inflammatory bowel disease (IBD) affects approximately 4 million people worldwide and can be caused by dysregulated mucosal immune responses to the intestinal commensal microflora. Immunoglobulin A (IgA) is considered to be the principal antibody in intestinal secretions and functions to prevent commensals and pathogenic organisms from gaining access to epithelial cell surfaces. Immunoglobulin A deficiency in humans has been associated with celiac disease and ulcerative colitis. However, the precise role of IgA in the pathogenesis of these disorders is yet to be fully understood.


Clinical and Vaccine Immunology | 2009

Oral Live Vaccine Strain-Induced Protective Immunity against Pulmonary Francisella tularensis Challenge Is Mediated by CD4+ T Cells and Antibodies, Including Immunoglobulin A

Heather J. Ray; Yu Cong; Ashlesh K. Murthy; Dale M. Selby; Karl E. Klose; Jeffrey R. Barker; M. Neal Guentzel; Bernard P. Arulanandam

ABSTRACT Francisella tularensis is an intracellular gram-negative bacterium and the etiological agent of pulmonary tularemia. Given the high degrees of infectivity in the host and of dissemination of bacteria following respiratory infection, immunization strategies that target mucosal surfaces are critical for the development of effective vaccines against this organism. In this study, we have characterized the efficacy of protective immunity against pneumonic tularemia following oral vaccination with F. tularensis LVS (live vaccine strain). Mice vaccinated orally with LVS displayed colocalization of LVS with intestinal M cells, with subsequent enhanced production of splenic antigen-specific gamma interferon and of systemic and mucosal antibodies, including immunoglobulin A (IgA). LVS-vaccinated BALB/c mice were highly protected against intranasal (i.n.) SCHU S4 challenge and exhibited significantly less bacterial replication in the lungs, liver, and spleen than mock-immunized animals. Depletion of CD4+ T cells significantly abrogated the protective immunity, and mice deficient in B cells or IgA displayed partial protection against SCHU S4 challenge. These results suggest that oral vaccination with LVS induces protective immunity against i.n. challenge with F. tularensis SCHU S4 by a process mediated cooperatively by CD4+ T cells and antibodies, including IgA.


Journal of Immunology | 2008

Endogenous IFN-γ Production Is Induced and Required for Protective Immunity against Pulmonary Chlamydial Infection in Neonatal Mice

Madhulika Jupelli; M. Neal Guentzel; Patricia A. Meier; Guangming Zhong; Ashlesh K. Murthy; Bernard P. Arulanandam

Chlamydia trachomatis infection in neonates, not adults, has been associated with the development of chronic respiratory sequelae. Adult chlamydial infections induce Th1-type responses that subsequently clear the infection, whereas the neonatal immune milieu in general has been reported to be biased toward Th2-type responses. We examined the protective immune responses against intranasal Chlamydia muridarum challenge in 1-day-old C57BL/6 and BALB/c mice. Infected C57BL/6 pups displayed earlier chlamydial clearance (day 14) compared with BALB/c pups (day 21). However, challenged C57BL/6 pups exhibited prolonged deficits in body weight gain (days 12–30) compared with BALB/c pups (days 9–12), which correlated with continual pulmonary cellular infiltration. Both strains exhibited a robust Th1-type response, including elevated titers of serum antichlamydial IgG2a and IgG2b, not IgG1, and elevated levels of splenic C. muridarum-specific IFN-γ, not IL-4, production. Additionally, elevated IFN-γ, not IL-4 expression, was observed locally in the infected lungs of both mouse strains. The immune responses in C57BL/6 pups were significantly greater compared with BALB/c pups after chlamydial challenge. Importantly, infected mice deficient in IFN-γ or IFN-γ receptor demonstrated enhanced chlamydial dissemination, and 100% of animals died by 2 wk postchallenge. Collectively, these results indicate that neonatal pulmonary chlamydial infection induces a robust Th1-type response, with elevated pulmonary IFN-γ production, and that endogenous IFN-γ is important in protection against this infection. The enhanced IFN-γ induction in the immature neonatal lung also may be relevant to the development of respiratory sequelae in adult life.


Clinical and Vaccine Immunology | 2007

Induction of Cross-Serovar Protection against Genital Chlamydial Infection by a Targeted Multisubunit Vaccination Approach

Weidang Li; M. Neal Guentzel; J. Seshu; Guangming Zhong; Ashlesh K. Murthy; Bernard P. Arulanandam

ABSTRACT An important consideration for antichlamydial vaccine development is the induction of cross-serovar protection, since multiple serovars (D to L) of Chlamydia trachomatis cause genital infections. We have shown previously that vaccination with C. trachomatis-derived recombinant chlamydial protease-like activity factor (rCPAF) induced significant earlier resolution of Chlamydia muridarum infection and reduced oviduct pathology. However, the vaccinated mice continued to shed chlamydiae for up to 2 weeks after challenge. In this study, C. trachomatis serovar D recombinant proteins, such as recombinant major outer membrane protein (rMOMP), recombinant inclusion membrane protein A (rIncA), and rCPAF were administered intranasally, individually or in combinations, with murine interleukin-12 (IL-12) as an adjuvant, and cross-species immunity against intravaginal C. muridarum infection was examined. Immunization with rCPAF plus IL-12 (rCPAF+IL-12), compared to immunization with rIncA+IL-12 or rMOMP+IL-12, induced the greatest antigen-specific gamma interferon production from purified CD4+ T cells and concurrently enhanced serum antibody production. All (100%) the animals vaccinated with rCPAF+IL-12 alone or in any combination completely resolved the infection by day 18 after challenge compared to animals vaccinated with rIncA+IL-12 (50%), rMOMP+IL-12 (33%), or phosphate-buffered saline (mock vaccinated; 0%). Moreover, oviduct pathology in mice vaccinated by any regimen that included rCPAF, but not rMOMP+IL-12 or rIncA+IL-12 alone, was markedly reduced compared to mock-immunized animals. The addition of rMOMP and/or rIncA did not significantly enhance the rCPAF+IL-12-induced effect on bacterial clearance or oviduct pathology. These results suggest a greater conservation of protective linear antigenic epitopes within CPAF than MOMP or IncA across the examined serovars and the need to identify other highly conserved antigens for use with rCPAF in a multisubunit recombinant vaccine.

Collaboration


Dive into the Ashlesh K. Murthy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Neal Guentzel

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Guangming Zhong

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

James P. Chambers

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Weidang Li

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Jieh Juen Yu

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Karl E. Klose

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas G. Forsthuber

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge