Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashley G. Rivenbark is active.

Publication


Featured researches published by Ashley G. Rivenbark.


Epigenetics | 2012

Epigenetic reprogramming of cancer cells via targeted DNA methylation

Ashley G. Rivenbark; Sabine Stolzenburg; Adriana S. Beltran; Xinni Yuan; Marianne G. Rots; Pilar Blancafort

An obstacle in the treatment of human diseases such as cancer is the inability to selectively and effectively target historically undruggable targets such as transcription factors. Here, we employ a novel technology using artificial transcription factors (ATFs) to epigenetically target gene expression in cancer cells. We show that site-specific DNA methylation and long-term stable repression of the tumor suppressor Maspin and the oncogene SOX2 can be achieved in breast cancer cells via zinc-finger ATFs targeting DNA methyltransferase 3a (DNMT3a) to the promoters of these genes. Using this approach, we show Maspin and SOX2 downregulation is more significant as compared with transient knockdown, which is also accompanied by stable phenotypic reprogramming of the cancer cell. These findings indicate that multimodular Zinc Finger Proteins linked to epigenetic editing domains can be used as novel cell resources to selectively and heritably alter gene expression patterns to stably reprogram cell fate.


Nucleic Acids Research | 2012

Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer

Sabine Stolzenburg; Marianne G. Rots; Adriana S. Beltran; Ashley G. Rivenbark; Xinni Yuan; Haili Qian; Pilar Blancafort

The transcription factor (TF) SOX2 is essential for the maintenance of pluripotency and self-renewal in embryonic stem cells. In addition to its normal stem cell function, SOX2 over-expression is associated with cancer development. The ability to selectively target this and other oncogenic TFs in cells, however, remains a significant challenge due to the ‘undruggable’ characteristics of these molecules. Here, we employ a zinc finger (ZF)-based artificial TF (ATF) approach to selectively suppress SOX2 gene expression in cancer cells. We engineered four different proteins each composed of 6ZF arrays designed to bind 18 bp sites in the SOX2 promoter and enhancer region, which controls SOX2 methylation. The 6ZF domains were linked to the Kruppel Associated Box (SKD) repressor domain. Three engineered proteins were able to bind their endogenous target sites and effectively suppress SOX2 expression (up to 95% repression efficiencies) in breast cancer cells. Targeted down-regulation of SOX2 expression resulted in decreased tumor cell proliferation and colony formation in these cells. Furthermore, induced expression of an ATF in a mouse model inhibited breast cancer cell growth. Collectively, these findings demonstrate the effectiveness and therapeutic potential of engineered ATFs to mediate potent and long-lasting down-regulation of oncogenic TF expression in cancer cells.


Breast Cancer Research | 2011

Generation of tumor-initiating cells by exogenous delivery of OCT4 transcription factor

Adriana S. Beltran; Ashley G. Rivenbark; Bryan T. Richardson; Xinni Yuan; Haili Quian; John P. Hunt; Eric I. Zimmerman; Lee M. Graves; Pilar Blancafort

IntroductionTumor-initiating cells (TIC) are being extensively studied for their role in tumor etiology, maintenance and resistance to treatment. The isolation of TICs has been limited by the scarcity of this population in the tissue of origin and because the molecular signatures that characterize these cells are not well understood. Herein, we describe the generation of TIC-like cell lines by ectopic expression of the OCT4 transcription factor (TF) in primary breast cell preparations.MethodsOCT4 cDNA was over-expressed in four different primary human mammary epithelial (HMEC) breast cell preparations from reduction mammoplasty donors. OCT4-transduced breast cells (OTBCs) generated colonies (frequency ~0.01%) in self-renewal conditions (feeder cultures in human embryonic stem cell media). Differentiation assays, immunofluorescence, immunohistochemistry, and flow cytometry were performed to investigate the cell of origin of OTBCs. Serial dilutions of OTBCs were injected in nude mice to address their tumorigenic capabilities. Gene expression microarrays were performed in OTBCs, and the role of downstream targets of OCT4 in maintaining self-renewal was investigated by knock-down experiments.ResultsOTBCs overcame senescence, overexpressed telomerase, and down-regulated p16INK4A . In differentiation conditions, OTBCs generated populations of both myoepithelial and luminal cells at low frequency, suggesting that the cell of origin of some OTBCs was a bi-potent stem cell. Injection of OTBCs in nude mice generated poorly differentiated breast carcinomas with colonization capabilities. Gene expression microarrays of OTBC lines revealed a gene signature that was over-represented in the claudin-low molecular subtype of breast cancer. Lastly, siRNA-mediated knockdown of OCT4 or downstream embryonic targets of OCT4, such as NANOG and ZIC1, suppressed the ability of OTBCs to self-renew.ConclusionsTransduction of OCT4 in normal breast preparations led to the generation of cell lines possessing tumor-initiating and colonization capabilities. These cells developed high-grade, poorly differentiated breast carcinomas in nude mice. Genome-wide analysis of OTBCs outlined an embryonic TF circuitry that could be operative in TICs, resulting in up-regulation of oncogenes and loss of tumor suppressive functions. These OTBCs represent a patient-specific model system for the discovery of novel oncogenic targets in claudin-low tumors.


American Journal of Pathology | 2013

Molecular and cellular heterogeneity in breast cancer: challenges for personalized medicine.

Ashley G. Rivenbark; Siobhan M. O’Connor; William B. Coleman

Breast cancer is noted for disparate clinical behaviors and patient outcomes, despite common histopathological features at diagnosis. Molecular pathogenesis studies suggest that breast cancer is a collection of diseases with variable molecular underpinnings that modulate therapeutic responses, disease-free intervals, and long-term survival. Traditional therapeutic strategies for individual patients are guided by the expression status of the estrogen and progesterone receptors (ER and PR) and human epidermal growth factor receptor 2 (HER2). Although such methods for clinical classification have utility in selection of targeted therapies, short-term patient responses and long-term survival remain difficult to predict. Molecular signatures of breast cancer based on complex gene expression patterns have utility in prediction of long-term patient outcomes, but are not yet used for guiding therapy. Examination of the correspondence between these methods for breast cancer classification reveals a lack of agreement affecting a significant percentage of cases. To realize true personalized breast cancer therapy, a more complete analysis and evaluation of the molecular characteristics of the disease in the individual patient is required, together with an understanding of the contributions of specific genetic and epigenetic alterations (and their combinations) to management of the patient. Here, we discuss the molecular and cellular heterogeneity of breast cancer, the impact of this heterogeneity on practical breast cancer classification, and the challenges for personalized breast cancer treatment.


International Journal of Oncology | 2014

Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer.

Rupninder Sandhu; Ashley G. Rivenbark; Randi M. Mackler; Chad A. Livasy; William B. Coleman

Basal-like breast cancers frequently express aberrant DNA hypermethylation associated with concurrent silencing of specific genes secondary to DNMT3b overexpression and DNMT hyperactivity. DNMT3b is known to be post-transcriptionally regulated by microRNAs. The objective of the current study was to determine the role of microRNA dysregulation in the molecular mechanism governing DNMT3b overexpression in primary breast cancers that express aberrant DNA hypermethylation. The expression of microRNAs (miRs) that regulate (miR-29a, miR-29b, miR-29c, miR-148a and miR-148b) or are predicted to regulate DNMT3b (miR-26a, miR-26b, miR-203 and miR-222) were evaluated among 70 primary breast cancers (36 luminal A-like, 13 luminal B-like, 5 HER2-enriched, 16 basal-like) and 18 normal mammoplasty tissues. Significantly reduced expression of miR-29c distinguished basal-like breast cancers from other breast cancer molecular subtypes. The expression of aberrant DNA hypermethylation was determined in a subset of 33 breast cancers (6 luminal A-like, 6 luminal B-like, 5 HER2-enriched and 16 basal-like) through examination of methylation-sensitive biomarker gene expression (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, MYB, TFF3 and SCNN1A), 11/33 (33%) cancers exhibited aberrant DNA hypermethylation including 9/16 (56%) basal-like cancers, but only 2/17 (12%) non-basal-like cancers (luminal A-like, n=1; HER2-enriched, n=1). Breast cancers with aberrant DNA hypermethylation express diminished levels of miR-29a, miR-29b, miR-26a, miR-26b, miR-148a and miR-148b compared to cancers lacking aberrant DNA hypermethylation. A total of 7/9 (78%) basal-like breast cancers with aberrant DNA hypermethylation exhibit diminished levels of ≥6 regulatory miRs. The results show that i) reduced expression of miR-29c is characteristic of basal-like breast cancers, ii) miR and methylation-sensitive gene expression patterns identify two subsets of basal-like breast cancers, and iii) the subset of basal-like breast cancers with reduced expression of multiple regulatory miRs express aberrant DNA hypermethylation. Together, these findings strongly suggest that the molecular mechanism governing the DNMT3b-mediated aberrant DNA hypermethylation in primary breast cancer involves the loss of post-transcriptional regulation of DNMT3b by regulatory miRs.


International Journal of Oncology | 2012

Loss of post-transcriptional regulation of DNMT3b by microRNAs: A possible molecular mechanism for the hypermethylation defect observed in a subset of breast cancer cell lines

Rupninder Sandhu; Ashley G. Rivenbark; William B. Coleman

A hypermethylation defect associated with DNMT hyperactivity and DNMT3b overexpression characterizes a subset of breast cancers and breast cancer cell lines. We analyzed breast cancer cell lines for differential expression of regulatory miRs to determine if loss of miR-mediated post-transcriptional regulation of DNMT3b represents the molecular mechanism that governs the overexpression of DNMT3b that drives the hypermethylation defect in breast cancer. MicroRNAs (miRs) that regulate (miR-29a, miR-29b, miR-29c, miR-148a, miR-148b) or are predicted (miR-26a, miR-26b, miR-203, miR-222) to regulate DNMT3b were examined among 10 hypermethylator and 6 non-hypermethylator breast cancer cell lines. Hypermethylator cell lines express diminished levels of miR-29c, miR-148a, miR-148b, miR-26a, miR-26b, and miR-203 compared to non-hypermethylator cell lines. miR expression patterns correlate inversely with methylation-sensitive gene expression (r=−0.66, p=0.0056) and directly with the methylation status of these genes (r=0.72, p=0.002). To determine the mechanistic role of specific miRs in the dysregulation of DNMT3b among breast cancer cell lines, miR levels were modulated by transfection of pre-miR precursors for miR-148b, miR-26b, and miR-29c into hypermethylator cell lines (Hs578T, HCC1937, SUM185) and transfection of antagomirs directed against miR-148b, miR-26b, and miR-29c into non-hypermethylator cell lines (BT20, MDA-MB-415, MDA-MB-468). Antagomir-mediated knock-down of miR-148b, miR-29c, and miR-26b significantly increased DNMT3b mRNA in non-hypermethylator cell lines, and re-expression of miR-148b, miR-29c, and miR-26b following transfection of pre-miR precursors significantly reduced DNMT3b mRNA in hypermethylator cell lines. These findings strongly suggest that: i) post-transcriptional regulation of DNMT3b is combinatorial, ii) diminished expression of regulatory miRs contributes to DNMT3b overexpression, iii) re-expression of regulatory miRs reduces DNMT3b mRNA levels in hypermethylator breast cancer cell lines, and iv) down-regulation of regulatory miRs increases DNMT3b mRNA levels in non-hypermethylator breast cancer cell lines. In conlcusion, the molecular mechanism governing the DNMT3b-mediated hypermethylation defect in breast cancer cell lines involves the loss of post-transcriptional regulation of DNMT3b by regulatory miRs.


Laboratory Investigation | 2006

DNA methylation-dependent silencing of CST6 in human breast cancer cell lines

Ashley G. Rivenbark; Wendell D. Jones; William B. Coleman

Cystatin M (CST6) is a candidate breast cancer tumor suppressor that is expressed in normal and premalignant breast epithelium, but not in metastatic breast cancer cell lines. CST6 is subject to epigenetic silencing in MCF-7 breast cancer cells related to methylation of the CpG island that encompasses the CST6 proximal promoter region and exon 1. In the current study, CST6 CpG island methylation and expression status was examined in a panel of breast cancer cell lines. Seven of 12 (58%) cell lines lack detectable expression of CST6 and treatment of these cells with 5-aza-2′-deoxycytidine resulted in a significant increase in CST6 expression, suggesting that the loss of expression may be related to methylation-dependent epigenetic silencing. Bisulfite sequencing of CST6 in a subset of breast cancer cell lines revealed CpG island hypermethylation in CST6-negative cells, and an absence of CpG island methylation in cells that express CST6. The extent of regional methylation was strongly associated with the lack of expression of CST6 among these cell lines. In particular, hypermethylation of the proximal promoter was significantly associated with CST6 gene silencing, and methylation of a number of individual CpGs was found to be statistically correlated with extinction of gene expression. These results establish a strong link between CST6 promoter hypermethylation and loss of CST6 expression in breast cancer cell lines, and suggest that methylation-dependent epigenetic silencing of CST6 may represent an important mechanism for loss of CST6 during breast carcinogenesis in vivo.


Oncogene | 2015

Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer

Sabine Stolzenburg; Adriana S. Beltran; Theresa Swift-Scanlan; Ashley G. Rivenbark; Rabab Rashwan; Pilar Blancafort

With the recent comprehensive mapping of cancer genomes, there is now a need for functional approaches to edit the aberrant epigenetic state of key cancer drivers to reprogram the epi-pathology of the disease. In this study we utilized a programmable DNA-binding methyltransferase to induce targeted incorporation of DNA methylation (DNAme) in the SOX2 oncogene in breast cancer through a six zinc finger (ZF) protein linked to DNA methyltransferase 3A (ZF-DNMT3A). We demonstrated long-lasting oncogenic repression, which was maintained even after suppression of ZF-DNMT3A expression in tumor cells. The de novo DNAme was faithfully propagated and maintained through cell generations even after the suppression of the expression of the chimeric methyltransferase in the tumor cells. Xenograft studies in NUDE mice demonstrated stable SOX2 repression and long-term breast tumor growth inhibition, which lasted for >100 days post implantation of the tumor cells in mice. This was accompanied with a faithful maintenance of DNAme in the breast cancer implants. In contrast, downregulation of SOX2 by ZF domains engineered with the Krueppel-associated box repressor domain resulted in a transient and reversible suppression of oncogenic gene expression. Our results indicated that targeted de novo DNAme of the SOX2 oncogenic promoter was sufficient to induce long-lasting epigenetic silencing, which was not only maintained during cell division but also significantly delayed the tumorigenic phenotype of cancer cells in vivo, even in the absence of treatment. Here, we outline a genome-based targeting approach to long-lasting tumor growth inhibition with potential applicability to many other oncogenic drivers that are currently refractory to drug design.


Epigenetics | 2006

DNA methylation-dependent epigenetic regulation of gene expression in MCF-7 breast cancer cells

Ashley G. Rivenbark; Wendell D. Jones; J. Devon Risher; William B. Coleman

To identify epigenetically-regulated genes in breast cancer, MCF-7 cells were exposed to 250nM 5-aza or 5-aza + 50nM TSA for 3 weeks followed by a 5 week recovery period after treatment withdrawal and gene expression patterns were examined by microarray analysis. We identified 20 genes that are associated with a >2-fold increase in expression in response to the demethylating treatment but returned to control levels after treatment withdrawal. RT-PCR verified that the genes identified were expressed at low or undetectable levels in control MCF-7 cells, but increased expression in treated cells. Most of these putative epigentically-regulated genes in MCF-7 cells do not contain CpG islands. In fact, these genes could be classified based upon their promoter CpG features, including genes with: (i) typical CpG features (CpG islands), (ii) intermediate CpG features (weak CpG islands), and (iii) atypical CpG features (no CpG islands). Prototype genes from each class (including CpG-deficient genes) were shown to be methylation-sensitive (subject to CpG methylation and responsive to demethylating agents), suggesting that not all gene targets of DNA methylation in breast cancer will contain a CpG island. Based upon the results of the current study and observations from the literature, we propose expansion of the current model for methylation-dependent regulation of gene expression to include genes lacking typical CpG islands. The expanded model we propose recognizes that all promoter CpG dinucleotides represent legitimate targets for DNA methylation and that the methylation of specific CpG dinucleotides in critical domains of regulatory regions can result in gene silencing.


Experimental and Molecular Pathology | 2012

Field cancerization in mammary carcinogenesis - Implications for prevention and treatment of breast cancer

Ashley G. Rivenbark; William B. Coleman

The natural history of breast cancer unfolds with the development of ductal carcinoma in situ (DCIS) in normal breast tissue, and evolution of this pre-invasive neoplasm into invasive cancer. The mechanisms that drive these processes are poorly understood, but evidence from the literature suggests that mammary carcinogenesis may occur through the process of field cancerization. Clinical observations are consistent with the idea that (i) DCIS may arise in a field of altered breast epithelium, (ii) narrow surgical margins do not remove the entire altered field (contributing to recurrence and/or disease progression), and (iii) whole-breast radiation therapy is effective in elimination of the residual field of altered cells adjacent to the resected DCIS. Molecular studies suggest that the field of altered breast epithelial cells may carry cancer-promoting genetic mutations (or other molecular alterations) or cancer promoting epimutations (oncogenic alterations in the epigenome). In fact, most breast cancers develop through a succession of molecular events involving both genetic mutations and epimutations. Hence, in hereditary forms of breast cancer, the altered field reflects the entire breast tissue which is composed of cells with a predisposing molecular lesion (such as a BRCA1 mutation). In the example of a BRCA1-mutant patient, it is evident that local resection of a DCIS lesion or localized but invasive cancer will not result in elimination of the altered field. In sporadic breast cancer patients, the mechanistic basis for the altered field may not be so easily recognized. Nonetheless, identification of the nature of field cancerization in a given patient may guide clinical intervention. Thus, patients with DCIS that develops in response to an epigenetic lesion (such as a hypermethylation defect affecting the expression of tumor suppressor genes) might be treated with epigenetic therapy to normalize the altered field and reduce the risk of secondary occurrence of DCIS or progression to invasive cancer.

Collaboration


Dive into the Ashley G. Rivenbark's collaboration.

Top Co-Authors

Avatar

William B. Coleman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Rupninder Sandhu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Chad A. Livasy

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Pilar Blancafort

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Adriana S. Beltran

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

J Devon Roll

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine Stolzenburg

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Devon Risher

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge