Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashley J. Frisch is active.

Publication


Featured researches published by Ashley J. Frisch.


Biology Letters | 2009

Marine hybrid hotspot at Indo-Pacific biogeographic border

Jean-Paul A. Hobbs; Ashley J. Frisch; Gerald R. Allen; Lynne van Herwerden

Studying hybridization is crucial to understanding speciation and almost all our knowledge comes from terrestrial and freshwater environments. Marine hybrids are considered rare, particularly on species-rich coral reefs. Here, we report a significant marine hybrid zone at Christmas and Cocos Islands (eastern Indian Ocean) with 11 hybrid coral reef fishes (across six families); the most recorded hybrids of any marine location. In most cases, at least one of the parent species is rare (less than three individuals per 3000 m2), suggesting that hybridization has occurred because individuals of the rare species have mated with another species owing to a scarcity of conspecific partners. These islands also represent a marine suture zone where many of the hybrids have arisen through interbreeding between Indian and Pacific Ocean species. For these species, it appears that past climate changes allowed species to diverge in allopatry, while recent conditions have facilitated contact and subsequent hybridization at this Indo-Pacific biogeographic border. The discovery of the Christmas–Cocos hybrid zone refutes the notion that hybridization is lacking on coral reefs and provides a natural laboratory for testing the generality of terrestrially derived hybridization theory in the marine environment.


Reviews in Fish Biology and Fisheries | 2004

Sex-change and gonadal steroids in sequentially-hermaphroditic teleost fish

Ashley J. Frisch

Sex-change is an intriguing phenomenon that is common among certain groups of teleost fishes. The process itself has a number of independent origins, although in each case it is initiated and (or) regulated by gonadal steroids. Despite the commercial importance of sex-change technology to fish culturists, our understanding of the relationship between steroids and sex-change is, at best, rudimentary. In this paper I review the current state of knowledge concerning (a) which steroids are involved, (b) how such steroids mediate sex-change, and (c) how steroidogenesis is regulated during gonadal transition. I conclude that the steroidal endocrinology of sex-change is multifarious and species specific – a result which challenges the relative stability of vertebrate endocrine axes, but one which probably reflects the independent evolution of this adaptation.


PLOS ONE | 2012

Effects of Spearfishing on Reef Fish Populations in a Multi-Use Conservation Area

Ashley J. Frisch; Andrew J. Cole; Jean-Paul A. Hobbs; Justin R. Rizzari; Katherine P. Munkres

Although spearfishing is a popular method of capturing fish, its ecological effects on fish populations are poorly understood, which makes it difficult to assess the legitimacy and desirability of spearfishing in multi-use marine reserves. Recent management changes within the Great Barrier Reef Marine Park (GBRMP) fortuitously created a unique scenario by which to quantify the effects of spearfishing on fish populations. As such, we employed underwater visual surveys and a before-after-control-impact experimental design to investigate the effects of spearfishing on the density and size structure of target and non-target fishes in a multi-use conservation park zone (CPZ) within the GBRMP. Three years after spearfishing was first allowed in the CPZ, there was a 54% reduction in density and a 27% reduction in mean size of coral trout (Plectropomus spp.), the primary target species. These changes were attributed to spearfishing because benthic habitat characteristics and the density of non-target fishes were stable through time, and the density and mean size of coral trout in a nearby control zone (where spearfishing was prohibited) remained unchanged. We conclude that spearfishing, like other forms of fishing, can have rapid and substantial negative effects on target fish populations. Careful management of spearfishing is therefore needed to ensure that conservation obligations are achieved and that fishery resources are harvested sustainably. This is particularly important both for the GBRMP, due to its extraordinarily high conservation value and world heritage status, and for tropical island nations where people depend on spearfishing for food and income. To minimize the effects of spearfishing on target species and to enhance protection of functionally important fishes (herbivores), we recommend that fishery managers adjust output controls such as size- and catch-limits, rather than prohibit spearfishing altogether. This will preserve the cultural and social importance of spearfishing in coastal communities where it is practised.


Journal of Fish Biology | 2009

Transgenerational marking of marine fish larvae: stable-isotope retention, physiological effects and health issues.

David H. Williamson; Geoffrey P. Jones; Simon R. Thorrold; Ashley J. Frisch

This study examined the toxicological and physiological responses of a commercially important coral-reef grouper, Plectropomus leopardus (Serranidae), to injection of enriched stable-isotope barium chloride (BaCl(2)) solution. Thirty adult P. leopardus were subject to one of two (138)BaCl(2) injection treatment groups (corresponding to dosage rates of 2 and 4 mg (138)Ba kg(-1) body mass), and a control group in which fish were injected with 0.9% sodium chloride (NaCl) solution. Fish from each group were sampled at post-injection intervals of 48 h and 1, 3, 5 and 8 weeks, at which time blood and tissue samples were removed from each fish. Residual concentrations of Ba and (138)Ba:(137)Ba ratios were measured in muscle, gonad, liver and bone tissues of each experimental fish. Elevated Ba concentrations were detected in all treatment fish tissue samples within 48 h post injection. Residual Ba concentrations decreased throughout the remainder of the 8 week experimental period in all tissues except bone. The BaCl(2) injection had no significant effects on measured whole blood variables or on the plasma concentrations of steroid hormones. Enriched Ba stable isotopes can therefore be used at low dosages to mark larvae of commercially important marine fishes, without adverse effects on the health of the fishes or on humans who may consume them.


Conservation Biology | 2015

Impact of conservation areas on trophic interactions between apex predators and herbivores on coral reefs

Justin R. Rizzari; Brock J. Bergseth; Ashley J. Frisch

Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top-down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large-bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no-take, and no-entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no-entry zones than in fished and no-take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no-entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top-down forces may not play a strong role in regulating large-bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes.


Coral Reefs | 2016

Reassessing the trophic role of reef sharks as apex predators on coral reefs

Ashley J. Frisch; Matthew Ireland; Justin R. Rizzari; Oona M. Lönnstedt; Katalin A. Magnenat; Christopher E. Mirbach; Jean-Paul A. Hobbs

Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark (Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.


PLOS ONE | 2013

Taxonomic, spatial and temporal patterns of bleaching in anemones inhabited by anemonefishes.

Jean-Paul A. Hobbs; Ashley J. Frisch; Benjamin M. Ford; Michele Thums; Pablo Saenz-Agudelo; Kathryn A. Furby; Michael L. Berumen

Background Rising sea temperatures are causing significant destruction to coral reef ecosystems due to coral mortality from thermally-induced bleaching (loss of symbiotic algae and/or their photosynthetic pigments). Although bleaching has been intensively studied in corals, little is known about the causes and consequences of bleaching in other tropical symbiotic organisms. Methodology/Principal Findings This study used underwater visual surveys to investigate bleaching in the 10 species of anemones that host anemonefishes. Bleaching was confirmed in seven anemone species (with anecdotal reports of bleaching in the other three species) at 10 of 19 survey locations spanning the Indo-Pacific and Red Sea, indicating that anemone bleaching is taxonomically and geographically widespread. In total, bleaching was observed in 490 of the 13,896 surveyed anemones (3.5%); however, this percentage was much higher (19–100%) during five major bleaching events that were associated with periods of elevated water temperatures and coral bleaching. There was considerable spatial variation in anemone bleaching during most of these events, suggesting that certain sites and deeper waters might act as refuges. Susceptibility to bleaching varied between species, and in some species, bleaching caused reductions in size and abundance. Conclusions/Significance Anemones are long-lived with low natural mortality, which makes them particularly vulnerable to predicted increases in severity and frequency of bleaching events. Population viability will be severely compromised if anemones and their symbionts cannot acclimate or adapt to rising sea temperatures. Anemone bleaching also has negative effects to other species, particularly those that have an obligate relationship with anemones. These effects include reductions in abundance and reproductive output of anemonefishes. Therefore, the future of these iconic and commercially valuable coral reef fishes is inextricably linked to the ability of host anemones to cope with rising sea temperatures associated with climate change.


Diseases of Aquatic Organisms | 2010

Coral disease in the Indian Ocean: taxonomic susceptibility, spatial distribution and the role of host density on the prevalence of white syndrome

Jean-Paul A. Hobbs; Ashley J. Frisch

Coral diseases, such as white diseases and white syndrome (WS), have caused widespread damage to coral reefs throughout the Caribbean and are increasing in prevalence on Pacific Ocean reefs. The current study confirms that WS is also present on coral reefs in the Indian Ocean and tests whether patterns in taxonomic susceptibility and spatial variability conform to patterns of WS reported in the Pacific Ocean. Underwater surveys at 19 sites around Christmas and Cocos Islands revealed that WS primarily affects Acropora plate corals (A. clathrata, A. cytherea and A. hyacinthus), and prevalence of WS varied significantly across all 3 spatial scales investigated (island, exposure and depth). Approximately 13.0% (range = 0 to 43% per site) of plate corals at Christmas Island sites exhibited WS compared to <1% at the Cocos Islands. At Christmas Island, WS prevalence was greater in shallow (31.5%) than in deeper water (6.7%) and greatest on the northern (leeward) side of the island (31.5%) compared to the more exposed coastlines (0 to 1.5%). Importantly, the spatial distribution of WS was positively correlated with host density, but not with hard coral cover, suggesting a role of host density in WS outbreaks. Overall the present study has established that WS is impacting remote, near-pristine reefs in the Indian Ocean. However, the highly variable spatial distribution of WS illustrates that patterns in disease prevalence, and the subsequent impact on coral reefs, can be location- or region-specific.


Regional Environmental Change | 2016

A Framework for Understanding Climate Change Impacts on Coral Reef Social-Ecological Systems

Joshua E. Cinner; Morgan S. Pratchett; Nicholas A. J. Graham; Vanessa Messmer; Mariana M. P. B. Fuentes; Tracy D. Ainsworth; Natalie C. Ban; Line K. Bay; Jessica Blythe; Delphine Dissard; Simon R. Dunn; Louisa Evans; Michael Fabinyi; Pedro Fidelman; Joana Figueiredo; Ashley J. Frisch; Christopher J. Fulton; Christina C. Hicks; Vimoksalehi Lukoschek; Jenny Mallela; Aurélie Moya; Lucie Penin; Jodie L. Rummer; Stefan P. W. Walker; David H. Williamson

Abstract Corals and coral-associated species are highly vulnerable to the emerging effects of global climate change. The widespread degradation of coral reefs, which will be accelerated by climate change, jeopardizes the goods and services that tropical nations derive from reef ecosystems. However, climate change impacts to reef social–ecological systems can also be bi-directional. For example, some climate impacts, such as storms and sea level rise, can directly impact societies, with repercussions for how they interact with the environment. This study identifies the multiple impact pathways within coral reef social–ecological systems arising from four key climatic drivers: increased sea surface temperature, severe tropical storms, sea level rise and ocean acidification. We develop a novel framework for investigating climate change impacts in social–ecological systems, which helps to highlight the diverse impacts that must be considered in order to develop a more complete understanding of the impacts of climate change, as well as developing appropriate management actions to mitigate climate change impacts on coral reef and people.


Nature Ecology and Evolution | 2017

Larval fish dispersal in a coral-reef seascape

Glenn R. Almany; Serge Planes; Simon R. Thorrold; Michael L. Berumen; Michael Bode; Pablo Saenz-Agudelo; Mary C. Bonin; Ashley J. Frisch; Hugo B. Harrison; Vanessa Messmer; Gerrit B. Nanninga; Mark A. Priest; Maya Srinivasan; Tane H. Sinclair-Taylor; David H. Williamson; Geoffrey P. Jones

Larval dispersal is a critical yet enigmatic process in the persistence and productivity of marine metapopulations. Empirical data on larval dispersal remain scarce, hindering the use of spatial management tools in efforts to sustain ocean biodiversity and fisheries. Here we document dispersal among subpopulations of clownfish (Amphiprion percula) and butterflyfish (Chaetodon vagabundus) from eight sites across a large seascape (10,000 km2) in Papua New Guinea across 2 years. Dispersal of clownfish was consistent between years, with mean observed dispersal distances of 15 km and 10 km in 2009 and 2011, respectively. A Laplacian statistical distribution (the dispersal kernel) predicted a mean dispersal distance of 13–19 km, with 90% of settlement occurring within 31–43 km. Mean dispersal distances were considerably greater (43–64 km) for butterflyfish, with kernels declining only gradually from spawning locations. We demonstrate that dispersal can be measured on spatial scales sufficient to inform the design of and test the performance of marine reserve networks.

Collaboration


Dive into the Ashley J. Frisch's collaboration.

Top Co-Authors

Avatar

Jean-Paul A. Hobbs

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael L. Berumen

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge