Ashley J. R. Carter
Florida State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ashley J. R. Carter.
BMC Evolutionary Biology | 2003
David Houle; Jason G. Mezey; Paul Galpern; Ashley J. R. Carter
BackgroundMany studies in evolutionary biology and genetics are limited by the rate at which phenotypic information can be acquired. The wings of Drosophila species are a favorable target for automated analysis because of the many interesting questions in evolution and development that can be addressed with them, and because of their simple structure.ResultsWe have developed an automated image analysis system (WINGMACHINE) that measures the positions of all the veins and the edges of the wing blade of Drosophilid flies. A video image is obtained with the aid of a simple suction device that immobilizes the wing of a live fly. Low-level processing is used to find the major intersections of the veins. High-level processing then optimizes the fit of an a priori B-spline model of wing shape. WINGMACHINE allows the measurement of 1 wing per minute, including handling, imaging, analysis, and data editing. The repeatabilities of 12 vein intersections averaged 86% in a sample of flies of the same species and sex.Comparison of 2400 wings of 25 Drosophilid species shows that wing shape is quite conservative within the group, but that almost all taxa are diagnosably different from one another. Wing shape retains some phylogenetic structure, although some species have shapes very different from closely related species. The WINGMACHINE system facilitates artificial selection experiments on complex aspects of wing shape. We selected on an index which is a function of 14 separate measurements of each wing. After 14 generations, we achieved a 15 S.D. difference between up and down-selected treatments.ConclusionWINGMACHINE enables rapid, highly repeatable measurements of wings in the family Drosophilidae. Our approach to image analysis may be applicable to a variety of biological objects that can be represented as a framework of connected lines.
BMC Medical Genetics | 2011
Ashley J. R. Carter; Andrew Q Nguyen
BackgroundMany serious diseases have a genetic basis which, from an evolutionary point of view, should have been selected against, resulting in very low frequencies. The remarkable sustained prevalence of a number of disease-associated alleles is therefore surprising. We believe that antagonistic pleiotropy, when multiple effects of a gene have opposing effects on fitness (e.g., sickle cell disease), may be more widespread than typically considered. We hypothesize that, rather than being an exception to the rule of genetic disorders, antagonistic pleiotropy may be common.MethodsWe surveyed the medical literature in order to determine whether sufficient evidence exists to reassess the nature of antagonistic pleiotropy; from being considered an unusual scenario to one that is anticipated. We also used a simple population genetic model to examine the feasibility of antagonistic pleiotropy to act as a mechanism to maintain polymorphism for serious genetic disorders even if the benefits are subtle.ResultsWe identified a number of examples of antagonistic pleiotropy where the deleterious effect, the beneficial effect, and the exact molecular cause have been demonstrated. We also identified putative cases in which there is circumstantial evidence or a strong reason to expect antagonistic pleiotropy in a genetic disorder. The population genetic model demonstrates that alleles with severe deleterious health effects can be maintained at medically relevant frequencies with only minor beneficial pleiotropic effects.ConclusionWe believe that our identification of several cases of antagonistic pleiotropy, despite the lack of research on this question and the varied natures of the types of these disorders, speaks to both the underappreciated nature of this phenomenon and its potentially fundamental importance. If antagonistic pleiotropy is as common as our research suggests, this may explain why so many serious diseases, even apparently environmentally caused ones, have a genetic component. Furthermore, acceptance of a genome full of antagonistically pleiotropic genetic interactions poses important implications for clinical treatment and disease prevention research, especially genetically based therapies.
Evolution | 2006
Thomas F. Hansen; José M. Álvarez-Castro; Ashley J. R. Carter; Johachim Hermisson; Günter P. Wagner
Abstract We investigate the multilinear epistatic model under mutation‐limited directional selection. We confirm previous results that only directional epistasis, in which genes on average reinforce or diminish each others effects, contribute to the initial evolution of mutational effects. Thus, either canalization or decanalization can occur under directional selection, depending on whether positive or negative epistasis is prevalent. We then focus on the evolution of the epistatic coefficients themselves. In the absence of higher‐order epistasis, positive pairwise epistasis will tend to weaken relative to additive effects, while negative pairwise epistasis will tend to become strengthened. Positive third‐order epistasis will counteract these effects, while negative third‐order epistasis will reinforce them. More generally, gene interactions of all orders have an inherent tendency for negative changes under directional selection, which can only be modified by higher‐order directional epistasis. We identify three types of nonadditive quasi‐equilibrium architectures that, although not strictly stable, can be maintained for an extended time: (1) nondirectional epistatic architectures; (2) canalized architectures with strong epistasis; and (3) near‐additive architectures in which additive effects keep increasing relative to epistasis.
The American Naturalist | 2006
Thomas F. Hansen; Ashley J. R. Carter; Christophe Pélabon
Adaptation is usually conceived as the fit of a population mean to a fitness optimum. Natural selection, however, does not act only to optimize the population mean. Rather, selection normally acts on the fitness of individual organisms in the population. Furthermore, individual genotypes do not produce invariant phenotypes, and their fitness depends on how precisely they are able to realize their target phenotypes. For these reasons we suggest that it is better to conceptualize adaptation as accuracy rather than as optimality. The adaptive inaccuracy of a genotype can be measured as a function of the expected distance of its associated phenotype from a fitness optimum. The less the distance, the more accurate is the adaptation. Adaptive accuracy has two components: the deviance of the genotypically set target phenotype from the optimum and the precision with which this target phenotype can be realized. The second component, the adaptive precision, has rarely been quantified as such. We survey the literature to quantify how much of the phenotypic variation in wild populations is due to imprecise development. We find that this component is often substantial and highly variable across traits. We suggest that selection for improved precision may be important for many traits.
Evolution | 2010
Christophe Pélabon; Thomas F. Hansen; Ashley J. R. Carter; David Houle
How variation and variability (the capacity to vary) may respond to selection remain open questions. Indeed, effects of different selection regimes on variational properties, such as canalization and developmental stability are under debate. We analyzed the patterns of among‐ and within‐individual variation in two wing‐shape characters in populations of Drosophila melanogaster maintained under fluctuating, disruptive, and stabilizing selection for more than 20 generations. Patterns of variation in wing size, which was not a direct target of selection, were also analyzed. Disruptive selection dramatically increased phenotypic variation in the two shape characters, but left phenotypic variation in wing size unaltered. Fluctuating and stabilizing selection consistently decreased phenotypic variation in all traits. In contrast, within‐individual variation, measured by the level of fluctuating asymmetry, increased for all traits under all selection regimes. These results suggest that canalization and developmental stability are evolvable and presumably controlled by different underlying genetic mechanisms, but the evolutionary responses are not consistent with an adaptive response to selection on variation. Selection also affected patterns of directional asymmetry, although inconsistently across traits and treatments.
Journal of Evolutionary Biology | 2006
Christophe Pélabon; Thomas F. Hansen; Ashley J. R. Carter; David Houle
We tested whether directional selection on an index‐based wing character in Drosophila melanogaster affected developmental stability and patterns of directional asymmetry. We selected for both an increase (up selection) and a decrease (down selection) of the index value on the left wing and compared patterns of fluctuating and directional asymmetry in the selection index and other wing traits across selection lines. Changes in fluctuating asymmetry across selection lines were predominantly small, but we observed a tendency for fluctuating asymmetry to decrease in the up‐selected lines in both replicates. Because changes in fluctuating asymmetry depended on the direction of selection, and were not related to changes in trait size, these results fail to support existing hypotheses linking directional selection and developmental stability. Selection also produced a pattern of directional asymmetry that was similar in all selected lines whatever the direction of selection. This result may be interpreted as a release of genetic variance in directional asymmetry under selection.
Evolution | 2011
Ashley J. R. Carter; David Houle
Fluctuating (nondirectional) asymmetry (FA) of bilaterally paired structures on a symmetrical organism is commonly used to assay the developmental instability (DI) caused by environmental or genetic factors. Although evidence for natural selection to reduce FA has been reported, evidence that FA (and by extension DI) is heritable is weak. We report the use of artificial selection to demonstrate heritable variation in the fluctuating asymmetry of interlandmark distances within the wing in an outbred population of Drosophila melanogaster. Our estimates for the heritability of FA range from 0% to 1% and result in estimates for the heritability of DI as large as 20%, comparable to values typical for life‐history traits. These values indicate the existence of evolutionarily relevant genetic variation for DI and the effectiveness of selection for reduced FA suggests that natural selection has not fixed all the genetic variants that would improve developmental stability in these populations.
International Journal of Evolutionary Biology | 2009
Ashley J. R. Carter; Elizabeth Osborne; David Houle
Directional asymmetry (DA), the consistent difference between a pair of morphological structures in which the same side is always larger than the other, presents an evolutionary mystery. Although many paired traits show DA, genetic variation for DA has not been unambiguously demonstrated. Artificial selection is a powerful technique for uncovering selectable genetic variation; we review and critique the limited number of previous studies that have been performed to select on DA and present the results of a novel artificial selection experiment on the DA of posterior crossvein location in Drosophila wings. Fifteen generations of selection in two genetically distinct lines were performed and none of the lines showed a significant response to selection. Our results therefore support and reconfirm previous findings; despite apparent natural variation and evolution of DA in nature, DA remains a paradoxical trait that does not respond to artificial selection.
Health Research Policy and Systems | 2015
Ashley J. R. Carter; Beverly Delarosa; Hannah Hur
BackgroundIdeally, the allocation of research funding for each specific type of cancer should be proportional to its societal burden. This burden can be estimated with the metric ‘years of life lost’ (YLL), which combines overall mortality and age at death.MethodsUsing United Kingdom data from 2010, we compared research funding from the National Cancer Research Institute to this YLL burden metric for 26 types of cancers in order to identify the discrepancies between cancer research funding allocation and societal burden. We also compared these values to United States data from 2010 and United Kingdom data published in 2005.ResultsOur study revealed a number of discrepancies between cancer research funding and burden. Some cancers are funded at levels far higher than their relative burden suggests (testicular, leukaemia, Hodgkin’s lymphoma, breast, cervical, ovarian, prostate) while other cancers appear underfunded (gallbladder, lung, nasopharyngeal, intestine, stomach, pancreatic, thyroid, oesophageal, liver, kidney, bladder, and brain/central nervous system). United Kingdom funding patterns over the past decade have generally moved to increase funding to previously underfunded cancers with one notable exception showing a converse trend (breast cancer). The broad relationship between United Kingdom and United States funding patterns is similar with a few exceptions (e.g. leukaemia, Hodgkin’s lymphoma, prostate, testicular cancer).ConclusionsThere are discrepancies between cancer research funding allocation and societal burden in the United Kingdom. These discrepancies are broadly similar in both the United Kingdom and the United States and, while they appear to be improving, this is not consistent across all types of cancer.
Journal of Insect Behavior | 2014
Amberle McKee; Shanna M. Newton; Ashley J. R. Carter
Many organisms have been reported to choose their mates in order to increase the heterozygosity of their offspring by avoiding mating with relatives or homozygous individuals. Most previous studies using Drosophila melanogaster have used artificial chromosomes or extreme inbreeding treatments, situations unlikely to be matched in nature. Additionally, few studies have examined the interaction between female inbreeding status and her choice of mate. Using females and males from populations that had experienced either random mating or one generation of sib-sib inbreeding, we measured the preferences of females for males. Our results indicate that outbred males were chosen more often than inbred males and that this preference may be more pronounced in outbred females than in inbred ones.