Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashley L. Craig is active.

Publication


Featured researches published by Ashley L. Craig.


Molecular and Cellular Biology | 2000

Posttranslational Modifications of p53 in Replicative Senescence Overlapping but Distinct from Those Induced by DNA Damage

Katherine Webley; Jane A. Bond; Christopher J. Jones; Jeremy P. Blaydes; Ashley L. Craig; Ted R. Hupp; David Wynford-Thomas

ABSTRACT Replicative senescence in human fibroblasts is absolutely dependent on the function of the phosphoprotein p53 and correlates with activation of p53-dependent transcription. However, no evidence for posttranslational modification of p53 in senescence has been presented, raising the possibility that changes in transcriptional activity result from upregulation of a coactivator. Using a series of antibodies with phosphorylation-sensitive epitopes, we now show that senescence is associated with major changes at putative regulatory sites in the N and C termini of p53 consistent with increased phosphorylation at serine-15, threonine-18, and serine-376 and decreased phosphorylation at serine-392. Ionizing and UV radiation generated overlapping but distinct profiles of response, with increased serine-15 phosphorylation being the only common change. These results support a direct role for p53 in signaling replicative senescence and are consistent with the generation by telomere erosion of a signal which shares some but not all of the features of DNA double-strand breaks.


Molecular & Cellular Proteomics | 2004

The Barrett’s Antigen Anterior Gradient-2 Silences the p53 Transcriptional Response to DNA Damage

Elizabeth Pohler; Ashley L. Craig; James P. Cotton; Laura Lawrie; John F. Dillon; Pete Ross; Neil M. Kernohan; Ted R. Hupp

The esophageal epithelium is subject to damage from bile acid reflux that promotes normal tissue injury resulting in the development of Barrett’s epithelium. There is a selection pressure for mutating p53 in this preneoplastic epithelium, thus identifying a physiologically relevant model for discovering novel regulators of the p53 pathway. Proteomic technologies were used to identify such p53 regulatory factors by identifying proteins that were overexpressed in Barrett’s epithelium. A very abundant polypeptide selectively expressed in Barrett’s epithelium was identified as anterior gradient-2. Immunochemical methods confirmed that anterior gradient-2 is universally up-regulated in Barrett’s epithelium, relative to normal squamous tissue derived from the same patient. Transfection of the anterior gradient-2 gene into cells enhances colony formation, similar to mutant oncogenic p53 encoded by the HIS175 allele, suggesting that anterior gradient-2 can function as a survival factor. Deletion of the C-terminal 10 amino acids of anterior gradient-2 neutralizes the colony enhancing activity of the gene, suggesting a key role for this domain in enhancing cell survival. Constitutive overexpression of anterior gradient-2 does not alter cell-cycle parameters in unstressed cells, suggesting that this gene is not directly modifying the cell cycle. However, cells overexpressing anterior gradient-2 attenuate p53 phosphorylation at both Ser15 and Ser392 and silence p53 transactivation function in ultraviolet (UV)-damaged cells. Deletion of the C-terminal 10 amino acids of anterior gradient-2 permits phosphorylation at Ser15 in UV-damaged cells, suggesting that the C-terminal motif promoting colony survival also contributes to suppression of the Ser15 kinase pathway. These data identify anterior gradient-2 as a novel survival factor whose study may shed light on cellular pathways that attenuate the tumor suppressor p53.


Biochemical Journal | 1999

Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers

Ashley L. Craig; Lindsay Burch; Borek Vojtesek; Jaroslava Mikutowska; Alastair M. Thompson; Ted R. Hupp

The ability to separate the isoforms of human tumour suppressor protein p53 expressed in insect cells using heparin-Sepharose correlates with differences in the isoelectric point of p53, demonstrating that p53 can be heterogeneously modified and providing support for the use of insect cells as a model system for identifying novel signalling pathways that target p53. One p53 isoform that was reduced in its binding to the monoclonal antibody DO-1 could be stimulated in its binding to DO-1 by prior incubation with protein phosphatases, suggesting the presence of a previously unidentified N-terminal phosphorylation site capable of masking the DO-1 epitope. A synthetic peptide from the N-terminal domain of p53 containing phosphate at Ser(20) inhibited DO-1 binding, thus identifying the phosphorylation site responsible for DO-1 epitope masking. Monoclonal antibodies overlapping the DO-1 epitope were developed that are specific for phospho-Thr(18) (adjacent to the DO-1 epitope) and phospho-Ser(20) (within the DO-1 epitope) to determine whether direct evidence could be obtained for novel phosphorylation sites in human p53. A monoclonal antibody highly specific for phospho-Ser(20) detected significant phosphorylation of human p53 expressed in insect cells, whereas the relative proportion of p53 modified at Thr(18) was substantially lower. The relevance of these two novel phosphorylation sites to p53 regulation in human cells was made evident by the extensive phosphorylation of human p53 at Thr(18) and Ser(20) in a panel of human breast cancers with a wild-type p53 status. Phospho-Ser(20) or phospho-Thr(18) containing p53 peptides are as effective as the phospho-Ser(15) peptide at reducing mdm2 (mouse double minute 2) protein binding, indicating that the functional effects of these phosphorylation events might be to regulate the binding of heterologous proteins to p53. These results provide evidence in vivo for two novel phosphorylation sites within p53 at Ser(20) and Thr(18) that can affect p53 protein-protein interactions and indicate that some human cancers might have amplified one or more Ser(20) and Thr(18) kinase signalling cascades to modulate p53 activity.


Journal of Biological Chemistry | 2008

DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing

Ben Harrison; Michaela Kraus; Lindsay Burch; Craig Stevens; Ashley L. Craig; Phillip R. Gordon-Weeks; Ted R. Hupp

DAPK-1 (death-activated protein kinase) has wide ranging functions in cell growth control; however, DAPK-1 interacting proteins that mediate these effects are not well defined. Protein-protein interactions are driven in part by linear interaction motifs, and combinatorial peptide libraries were used to identify peptide interfaces for the kinase domain of DAPK-1. Peptides bound to DAPK-1core kinase domain fragments had homology to the N-terminal domain of the microtubule-associated protein MAP1B. Immunobinding assays demonstrated that DAPK-1 can bind to the full-length human MAP1B, a smaller N-terminal miniprotein containing amino acids 1-126 and the 12-amino acid polypeptides acquired by peptide selection. Amino acid starvation of cells induced a stable immune complex between MAP1B and DAPK-1, identifying a signal that forms the endogenous complex in cells. DAPK-1 and MAP1B co-expression form a synthetic lethal interaction as they cooperate to induce growth inhibition in a clonogenic assay. In cells, two co-localizing populations of DAPK-1 and MAP1B were observed using confocal microscopy; one pool co-localized with MAP1B plus tubulin, and a second pool co-localized with MAP1B plus cortical F-actin. Reduction of MAP1B protein using short interfering RNA attenuated DAPK-1-stimulated autophagy. Transfected MAP1B can synergize with DAPK-1 to stimulate membrane blebbing, whereas reduction of MAP1B using short interfering RNA attenuates DAPK-1 membrane blebbing activity. The autophagy inhibitor 3-methyladenine inhibits the DAPK-1 plus MAP1B-mediated membrane blebbing. These data highlight the utility of peptide aptamers to identify novel binding interfaces and highlight a role for MAP1B in DAPK-1-dependent signaling in autophagy and membrane blebbing.


Oncogene | 2000

Synergistic activation of p53-dependent transcription by two cooperating damage recognition pathways

Jeremy P. Blaydes; Ashley L. Craig; M. Wallace; H. M.-L. Ball; N. J. Traynor; N. K. Gibbs; Ted R. Hupp

High level activation of p53-dependent transcription occurs following cellular exposure to genotoxic damaging agents such as UV-C, while ionizing radiation damage does not induce a similarly potent induction of p53-dependent gene expression. Reasoning that one of the major differences between UV-C and ionizing radiation damage is that the latter does not inhibit general transcription, we attempted to reconstitute p53-dependent gene expression in ionizing irradiated cells by co-treatment with selected transcription inhibitors that alone do not activate p53. p53-dependent transcription can be dramatically enhanced by the treatment of ionizing irradiated cells with low doses of DRB, which on its own does not induce p53 activity. The mechanism of ionizing radiation-dependent activation of p53-dependent transcription using DRB is more likely due to inhibition of gene transcription rather than prolonged DNA damage, as the non-genotoxic and general transcription inhibitor Roscovitine also synergistically activates p53 function in ionizing irradiated cells. These results identify two distinct signal transduction pathways that cooperate to fully activate p53-dependent gene expression: one responding to lesions induced by ionizing radiation and the second being a kinase pathway that regulates general RNA Polymerase II activity.


EMBO Reports | 2003

Allosteric effects mediate CHK2 phosphorylation of the p53 transactivation domain.

Ashley L. Craig; Mary T. Scott; Lindsay Burch; Graeme Smith; Kathryn L. Ball; Ted R. Hupp

The tumour suppressor p53 is a tetrameric protein that is phosphorylated in its BOX‐I transactivation domain by checkpoint kinase 2 (CHK2) in response to DNA damage. CHK2 cannot phosphorylate small peptide fragments of p53 containing the BOX‐I motif, indicating that undefined determinants in the p53 tetramer mediate CHK2 recognition. Two peptides derived from the DNA‐binding domain of p53 bind to CHK2 and stimulate phosphorylation of full‐length p53 at Thr 18 and Ser 20, thus identifying CHK2‐docking sites. CHK2 can be fully activated in trans by the two p53 DNA‐binding‐domain peptides, and can phosphorylate BOX‐I transactivation‐domain fragments of p53 at Thr 18 and Ser 20. Although CHK2 has a basal Ser 20 kinase activity that is predominantly activated towards Thr 18, CHK1 has constitutive Thr 18 kinase activity that is predominantly activated in trans towards Ser 20. Cell division cycle 25C (CDC25C) phosphorylation by CHK2 is unaffected by the p53 DNA‐binding‐domain peptides. The CHK2‐docking site in the BOX‐V motif is the smallest of the two CHK2 binding sites, and mutating certain amino acids in the BOX‐V peptide prevents CHK2 activation. A database search identified a p53 BOX‐I‐homology motif in p21WAF1 and although CHK2 is inactive towards this protein, the p53 DNA‐binding‐domain peptides induce phosphorylation of p21WAF1 at Ser 146. This provides evidence that CHK2 can be activated allosterically towards some substrates by a novel docking interaction, and identify a potential regulatory switch that may channel CHK2 into distinct signalling pathways in vivo.


Methods in Cell Biology | 2012

Methods for Studying the DNA Damage Response in the Caenorhabdatis elegans Germ Line

Ashley L. Craig; Sandra C. Moser; Aymeric P. Bailly; Anton Gartner

In response to genotoxic insults, cells activate DNA damage response pathways that either stimulate transient cell cycle arrest and DNA repair or induce apoptosis. The Caenorhabditis elegans germ line is now well established as a model system to study these processes in a genetically tractable, multicellular organism. Upon treatment with genotoxic agents, premeiotic C. elegans germ cells transiently halt cell cycle progression, whereas meiotic prophase germ cells in the late-pachytene stage undergo apoptosis. Further, accumulation of unrepaired meiotic recombination intermediates can also lead to apoptosis of affected pachytene cells. DNA damage-induced cell death requires key components of the evolutionarily conserved apoptotic machinery. Moreover, both cell cycle arrest and pachytene apoptosis responses depend on conserved DNA damage checkpoint proteins. Genetics- and genomics-based approaches that have demonstrated roles for conserved checkpoint proteins have also begun to uncover novel components of these response pathways. In this chapter, we briefly review the C. elegans DNA damage response field, discuss in detail methods currently used to assay DNA damage responses in C. elegans, and describe the development of new experimental tools that will facilitate a more comprehensive understanding of the DNA damage response.


Journal of Cell Biology | 2012

The dynamics of replication licensing in live Caenorhabditis elegans embryos

Remi Sonneville; Matthieu Querenet; Ashley L. Craig; Anton Gartner; J. Julian Blow

Live imaging in Caenorhabditis elegans provides an unprecedented view of the chromatin-binding behavior and subcellular localization of origin replication licensing proteins during early embryogenesis.


Molecular and Cellular Biology | 2007

The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members.

Ashley L. Craig; Jennifer A. Chrystal; Jennifer A. Fraser; Nathalie Sphyris; Yao Lin; Ben Harrison; Mary T. Scott; Irena Dornreiter; Ted R. Hupp

ABSTRACT Genetic and biochemical studies have shown that Ser20 phosphorylation in the transactivation domain of p53 mediates p300-catalyzed DNA-dependent p53 acetylation and B-cell tumor suppression. However, the protein kinases that mediate this modification are not well defined. A cell-free Ser20 phosphorylation site assay was used to identify a broad range of calcium calmodulin kinase superfamily members, including CHK2, CHK1, DAPK-1, DAPK-3, DRAK-1, and AMPK, as Ser20 kinases. Phosphorylation of a p53 transactivation domain fragment at Ser20 by these enzymes in vitro can be mediated in trans by a docking site peptide derived from the BOX-V domain of p53, which also harbors the ubiquitin signal for MDM2. Evaluation of these calcium calmodulin kinase superfamily members as candidate Ser20 kinases in vivo has shown that only CHK1 or DAPK-1 can stimulate p53 transactivation and induce Ser20 phosphorylation of p53. Using CHK1 as a prototypical in vivo Ser20 kinase, we demonstrate that (i) CHK1 protein depletion using small interfering RNA can attenuate p53 phosphorylation at Ser20, (ii) an enhanced green fluorescent protein (EGFP)-BOX-V fusion peptide can attenuate Ser20 phosphorylation of p53 in vivo, (iii) the EGFP-BOX-V fusion peptide can selectively bind to CHK1 in vivo, and (iv) the Δp53 spliced variant lacking the BOX-V motif is refractory to Ser20 phosphorylation by CHK1. These data indicate that the BOX-V motif of p53 has evolved the capacity to bind to enzymes that mediate either p53 phosphorylation or ubiquitination, thus controlling the specific activity of p53 as a transcription factor.


Oncogene | 1999

Dephosphorylation of p53 at Ser20 after cellular exposure to low levels of non-ionizing radiation

Ashley L. Craig; Jeremy P. Blaydes; Lindsay Burch; Alastair M. Thompson; Ted R. Hupp

Induction of the transactivation function of p53 after cellular irradiation was studied under conditions in which upstream signaling events modulating p53 activation were uncoupled from those regulating stabilization. This investigation prompted the discovery of a novel radiation-responsive kinase pathway targeting Ser20 that results in the masking of the DO-1 epitope in undamaged cells. Unmasking of the DO-1 epitope via dephosphorylation occurs in response to low doses of non-ionizing radiation. Our data show that phosphorylation at Ser20 reduces binding of the mdm2 protein, suggesting that a function of the Ser20-kinase pathway may be to produce a stable pool of inactive p53 in undamaged cells which can be readily activated after cellular injury. Phospho-specific monoclonal antibodies were used to determine whether the Ser20 signaling pathway is coupled to the Ser15 and Ser392 radiation-responsive kinase pathways. These results demonstrated that: (1) dephosphorylation at Ser20 is co-ordinated with an increased steady-state phosphorylation at Ser392 after irradiation, without p53 protein stabilization, and (2) stabilization of p53 protein can occur without Ser15 phosphorylation at higher doses of radiation. These data show that the Ser20 and Ser392 phosphorylation sites are both targeted by an integrated network of signaling pathways which is acutely sensitive to radiation injury.

Collaboration


Dive into the Ashley L. Craig's collaboration.

Top Co-Authors

Avatar

Ted R. Hupp

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Borivoj Vojtesek

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Harrison

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge