Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashley R. Connolly is active.

Publication


Featured researches published by Ashley R. Connolly.


Angewandte Chemie | 2010

Isothermal Detection of DNA by Beacon-Assisted Detection Amplification†

Ashley R. Connolly; Matt Trau

(Figure Presented) Not bad at all: A simple biological circuit composed of two integrated molecular switches was developed for the detection and amplification of a specific nucleic acid in a biological extract. The nucleic acid is recognized by a molecular beacon, then a DNA polymerase and nicking endonuclease are used to rapidly amplify the signal for sensitive detection of the nucleic acid.


Molecular Ecology | 2007

Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish

Karin S. Kassahn; M. Julian Caley; Alister C. Ward; Ashley R. Connolly; Glenn Stone; Ross H. Crozier

Coral reef fishes are expected to experience rising sea surface temperatures due to climate change. How well tropical reef fishes will respond to these increased temperatures and which genes are important in the response to elevated temperatures is not known. Microarray technology provides a powerful tool for gene discovery studies, but the development of microarrays for individual species can be expensive and time‐consuming. In this study, we tested the suitability of a Danio rerio oligonucleotide microarray for application in a species with few genomic resources, the coral reef fish Pomacentrus moluccensis. Results from a comparative genomic hybridization experiment and direct sequence comparisons indicate that for most genes there is considerable sequence similarity between the two species, suggesting that the D. rerio array is useful for genomic studies of P. moluccensis. We employed this heterologous microarray approach to characterize the early transcriptional response to heat stress in P. moluccensis. A total of 111 gene loci, many of which are involved in protein processing, transcription, and cell growth, showed significant changes in transcript abundance following exposure to elevated temperatures. Changes in transcript abundance were validated for a selection of candidate genes using quantitative real‐time polymerase chain reaction. This study demonstrates that heterologous microarrays can be successfully employed to study species for which specific microarrays have not yet been developed, and so have the potential to greatly enhance the utility of microarray technology to the field of environmental and functional genomics.


Apoptosis | 2005

Early gene response in lithium chloride induced apoptosis.

W. V. Zhang; M. Jullig; Ashley R. Connolly; N.S. Stott

Depending on the cellular context, lithium chloride can lead to enhanced proliferation, cell cycle arrest or apoptosis in mammalian cells. Although substantial work has been made to elucidate the downstream events in the case of lithium chloride-induced cellular proliferation, the molecular response to lithium chloride treatment in the apoptotic scenario is largely undefined. We have used quadruplicate human cDNA arrays with 8000 targets to analyze the early gene response in cultures of human T/C28a cells that undergo apoptosis in response to 20 mM lithium chloride treatment. Incubation of cell cultures with 20 mM lithium chloride for five hours caused alterations in the steady-state mRNA levels of a large number of genes. RT-PCR and real-time RT-PCR confirmed the array results for ten of eleven selected targets. In addition to one protein primarily associated with apoptosis, genes identified as differentially expressed based on microarray data mainly encode proteins involved in basic cellular functions such as signaling, cell cycle control and growth, cell-cell interaction, solute transport and transcription control. We present a list of 50 genes that were differentially expressed in response to lithium chloride treatment and which may represent a reference for further studies to define the pathways governing the apoptotic response to lithium chloride.


Journal of Immunological Methods | 1995

Mathematical considerations of competitive polymerase chain reaction

Ashley R. Connolly; Leslie G. Cleland; Bruce W. Kirkham

Reverse transcriptase polymerase chain reaction (PCR) is used frequently to monitor gene expression. It is generally regarded as a qualitative technique, although refinements have been made to improve quantification. The object of this study was to develop competitive PCRs to allow reliable quantification of the rat T cell cytokines interferon-gamma (IFN-gamma), interleukin-2 (IL-2) and interleukin-4 (IL-4). Truncated constructs of cDNA for these cytokines were prepared using appropriate pairs of standard and specially constructed primers designed to allow subsequent co-amplification of the purified competitor construct and the target cDNA. A high resolution capillary electrophoresis (CE) system was used for PCR product detection. The performance of the system was compared with a mathematical model that describes and predicts the exponential nature of the PCR reaction. Co-amplification of the competitor and target were achieved. A high level of resolution and accuracy was achieved using CE to detect and quantify the PCR products. The rates of generation of the respective products conformed closely but not exactly to the predictions of the mathematical model. The competitive PCRs estimated initial numbers of target cDNA within 1.1-5.0-fold relative to the amount of starting material as assessed by conventional spectrophotometric absorbance prior to dilution and amplification. A convenient and flexible competitive PCR strategy has been developed with accurate resolution of products and reliable quantification. Assay variability was far less than biological variability likely to be encountered in experiments investigating immunological responses in rats or other animals.


Angewandte Chemie | 2000

Catalyst Screening Using an Array of Thermistors

Ashley R. Connolly; John D. Sutherland

An attractive alternative to IR thermography for the screening of combinatorial catalyst libraries: A multiplexed array of 96 thermistors has been used to probe the temperature changes associated with chemical and biochemical reactions (see schematic diagram). This new technique is more sensitive than IR thermography and can reliably detect temperature changes of 100 μK.


Bioconjugate Chemistry | 2010

Considerations of Solid-Phase DNA Amplification

Ramkumar Palanisamy; Ashley R. Connolly; Matt Trau

Solid-phase (SP) polymerase chain reaction (PCR) is an increasingly popular tool used to produce immobilized DNA for a variety of applications, including high-throughput DNA sequencing and SNP analysis. Despite its usefulness, the mechanism of DNA amplification using immobilized primers has not been thoroughly explored. Herein, we describe a SP-PCR process that was designed to explore and better understand some limitations of SP-DNA amplification. The rate of SP-DNA amplification was measured, and the ability to exponentially amplify DNA on a surface was demonstrated. Approximately 50 amol of DNA was amplified to detectable levels using SP-PCR. The mechanism and some limitations of the reaction were investigated by measuring the density of the primer on the surface prior to amplification and the amount of immobilized amplicon produced after SP-PCR. This enabled some of the practical limitations of the reaction to be addressed within a logical theoretical framework.


International Immunology | 2009

Expression of survivin in lung eosinophils is associated with pathology in a mouse model of allergic asthma

Damon J. Tumes; Ashley R. Connolly; Lindsay A. Dent

Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-gamma was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice.


Analytical Chemistry | 2011

Epiallele Quantification Using Molecular Inversion Probes

Ramkumar Palanisamy; Ashley R. Connolly; Matt Trau

The location and level of DNA methylation within a genome is emerging as an important biomarker for cancer diagnosis. Despite its potential, it is difficult to comprehensively analyze the epialleles that are often found in a biological sample. Therefore, an assay utilizing molecular inversion probes was designed and used to expose and quantify epialleles in heterogeneously methylated bisulphite treated genomic DNA. Different CpG dinucleotides were able to be rapidly quantified with high resolution, sensitivity and specificity over a large dynamic range using rapid flow cytometric readout of multiplexable microbead DNA biosensors.


Molecular Immunology | 2008

Differential rates of apoptosis and recruitment limit eosinophil accumulation in the lungs of asthma-resistant CBA/Ca mice.

Damon J. Tumes; Alex C.H. Wong; William A. Sewell; Ashley R. Connolly; Lindsay A. Dent

The accumulation of eosinophils is a common feature of allergic airway inflammation and correlates with disease severity. In an ovalbumin (OVA)-induced murine model of allergic lung disease, CBA/Ca mice develop much lower levels of lung eosinophilia, lung oedema, mucus hypersecretion and airways obstruction than BALB/c and C57BL/6 strains. In this study these strains have been examined to identify mechanisms that control the recruitment and survival of eosinophils in the allergic lung. Following immunization with OVA, CBA/Ca mice developed a robust systemic allergic response, with high levels of total and OVA-specific IgE and increases in peripheral blood eosinophils. Lung eotaxin-1 levels and expression of CD18 on eosinophils recovered by bronchoalveolar lavage (BAL) were least pronounced in CBA/Ca mice, whereas mRNA for L-selectin was highest in eosinophils from C57BL/6 mice. Apoptosis of BAL eosinophils ex vivo was most pronounced in the CBA/Ca strain. BALB/c mice expressed the highest levels of the eosinophil growth and survival factor interleukin (IL)-5 in the lungs and BAL eosinophils from these animals expressed more of the anti-apoptotic proteins Bcl-xL and Bcl-2 than cells from the other strains. A combination of lower levels of recruitment and rapid apoptosis may therefore limit the accumulation of eosinophils and pathology in the lungs of CBA/Ca mice. In addition, although the level of pathology that developed in C57BL/6 and BALB/c mice was similar, some of the underlying mechanisms are likely to differ.


Analytical Chemistry | 2011

Sensitive quantification of somatic mutations using molecular inversion probes.

Rena Hirani; Ashley R. Connolly; Lisa Putral; Alexander Dobrovic; Matt Trau

Somatic mutations in DNA can serve as cancer specific biomarkers and are increasingly being used to direct treatment. However, they can be difficult to detect in tissue biopsies because there is often only a minimal amount of sample and the mutations are often masked by the presence of wild type alleles from nontumor material in the sample. To facilitate the sensitive and specific analysis of DNA mutations in tissues, a multiplex assay capable of detecting nucleotide changes in less than 150 cells was developed. The assay extends the application of molecular inversion probes to enable sensitive discrimination and quantification of nucleotide mutations that are present in less than 0.1% of a cell population. The assay was characterized by detecting selected mutations in the KRAS gene, which has been implicated in up to 25% of all cancers. These mutations were detected in a single multiplex assay by incorporating the rapid flow cytometric readout of multiplexable DNA biosensors.

Collaboration


Dive into the Ashley R. Connolly's collaboration.

Top Co-Authors

Avatar

Matt Trau

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rena Hirani

Australian Red Cross Blood Service

View shared research outputs
Top Co-Authors

Avatar

N.S. Stott

Health Science University

View shared research outputs
Top Co-Authors

Avatar

Alex C.H. Wong

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge