Ashley R. Field
James Cook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ashley R. Field.
Journal of Systematics and Evolution | 2016
Eric Schuettpelz; Harald Schneider; Alan R. Smith; Peter Hovenkamp; Jefferson Prado; Germinal Rouhan; Alexandre Salino; Michael Sundue; Thaís Elias Almeida; Barbara S. Parris; Emily B. Sessa; Ashley R. Field; André Luís de Gasper; Carl J. Rothfels; Michael D. Windham; Marcus Lehnert; Benjamin Dauphin; Atsushi Ebihara; Samuli Lehtonen; Pedro B. Schwartsburd; Jordan Metzgar; Li-Bing Zhang; Li-Yaung Kuo; Patrick J. Brownsey; Masahiro Kato; Marcelo Daniel Arana; Francine Costa Assis; Michael S. Barker; David S. Barrington; Ho-Ming Chang
Phylogeny has long informed pteridophyte classification. As our ability to infer evolutionary trees has improved, classifications aimed at recognizing natural groups have become increasingly predictive and stable. Here, we provide a modern, comprehensive classification for lycophytes and ferns, down to the genus level, utilizing a community‐based approach. We use monophyly as the primary criterion for the recognition of taxa, but also aim to preserve existing taxa and circumscriptions that are both widely accepted and consistent with our understanding of pteridophyte phylogeny. In total, this classification treats an estimated 11 916 species in 337 genera, 51 families, 14 orders, and two classes. This classification is not intended as the final word on lycophyte and fern taxonomy, but rather a summary statement of current hypotheses, derived from the best available data and shaped by those most familiar with the plants in question. We hope that it will serve as a resource for those wanting references to the recent literature on pteridophyte phylogeny and classification, a framework for guiding future investigations, and a stimulus to further discourse.
Cladistics | 2015
Liang Zhang; Carl J. Rothfels; Atsushi Ebihara; Eric Schuettpelz; Timothée Le Péchon; Peris Kamau; Hai He; Xin-Mao Zhou; Jefferson Prado; Ashley R. Field; George Yatskievych; Xin-Fen Gao; Li-Bing Zhang
The brake fern genus Pteris belongs to the Pteridaceae subfamily Pteridoideae. It contains 200–250 species distributed on all continents except Antarctica, with its highest species diversity in tropical and subtropical regions. The monophyly of Pteris has long been in question because of its great morphological diversity and because of the controversial relationships of the Australian endemic monospecific genus Platyzoma. The circumscription of the Pteridoideae has likewise been uncertain. Previous studies typically had sparse sampling of Pteris species and related genera and used limited DNA sequence data. In the present study, DNA sequences of six plastid loci of 146 accessions representing 119 species of Pteris (including the type of the genus) and 18 related genera were used to infer a phylogeny using maximum‐likelihood, Bayesian‐inference and maximum‐parsimony methods. Our major results include: (i) the previous uncertain relationships of Platyzoma were due to long‐branch attraction; (ii) Afropteris, Neurocallis, Ochropteris and Platyzoma are all embedded within a well‐supported Pteris sensu lato; (iii) the traditionally circumscribed Jamesonia is paraphyletic in relation to a monophyletic Eriosorus; (iv) Pteridoideae contains 15 genera: Actiniopteris, Anogramma, Austrogramme, Cerosora, Cosentinia, Eriosorus, Jamesonia, Nephopteris (no molecular data), Onychium, Pityrogramma, Pteris, Pterozonium, Syngramma, Taenitis and Tryonia; and (v) 15 well‐supported clades within Pteris are identified, which differ from one another on molecular, morphological and geographical grounds, and represent 15 major evolutionary lineages.
Molecular Phylogenetics and Evolution | 2016
Ashley R. Field; Weston L. Testo; Peter D. Bostock; Joseph A. M. Holtum; Michelle Waycott
The generic classification of huperzioid Lycopodiaceae was tested using Bayesian inference and Maximum likelihood phylogenetic analyses of DNA sequences from four chloroplast loci for 119 taxa and optimisation of 29 morphological characteristics onto the phylogeny. Consistent with previous studies, the subfamilies Lycopodioideae and Huperzioideae are monophyletic and diagnosable by synapomorphies that correlate with differences in their life-histories. Within the Huperzioideae, the monophyly of the widely adopted genus Huperzia (excl. Phylloglossum) is poorly supported. Three clades of huperzioid Lycopodiaceae were recovered in all analyses of molecular data: Phylloglossum drummondii, Huperzia sensu stricto and Phlegmariurus sensu lato. These clades are strongly supported by morphological characters, including differences in spores, gametophytes, sporophyte macro-morphology, as well as growth habit and life-histories. Our findings indicate that either a one-genus (Huperzia s.l.) or a three-genus (Phylloglossum, Huperzia s.s. and Phlegmariurus s.l.) classification of huperzioid Lycopods are equally supported by molecular evidence, but a two-genus system (Huperzia s.l.+Phylloglossum) is not. We recommend recognising three genera in the huperzioid Lycopodiaceae, as this classification best reflects evolutionary, ecological, and morphological divergence within the lineage.
PhytoKeys | 2013
Ashley R. Field; Peter D. Bostock
Abstract The genus Phlegmariurus Holubis recognised more widely than originally proposed and is circumscribed to include both Neotropic and Palaeotropic epiphytic and terrestrial species of Huperzioid Lycopodiaceae that have isotomous shoots, lack bulbils in their sporophyllous shoots and have spores with convex lateral margins and foveolate-fossulate sculpture restricted to their distal surfaces. New combinations with Phlegmariurus are proposed for 81 species and existing combinations identified for 33 species originating from the Palaeotropics. This installs a generic circumscription that is consistent between the Neotropics and Palaeotropics. A lectotype is designated for the type species of the genus, Phlegmariurus phlegmaria (L.) T.Sen & U.Sen
Pharmaceutical Biology | 2010
Wei-Han Lim; Jason Q. D. Goodger; Ashley R. Field; Joseph A. M. Holtum; Ian E. Woodrow
Context: The pharmaceutical alkaloid huperzine A (HupA), currently used in herbal supplements and medicines worldwide, is predominantly sourced from the Chinese lycopod Huperzia serrata (Thunb. ex Murray) Trev. (Lycopodiaceae), which on average contains only 0.08 mg HupA g−1 dry weight, and is experiencing a rapid decline in China due to over-harvesting. Objective: To find a high-yielding, natural source of HupA and/or the related huperzine B (HupB) that could potentially be used as the starting material in a commercial propagation program. Materials and methods: We surveyed 17 Huperzia species (15 indigenous to Australia and southeast Asia) for their foliar HupA and HupB concentrations. We also studied intra-specific variation for the huperzines in four species that were available in sufficient numbers, and determined tissue-specific accumulation in larger specimens. Results: HupA was detected in 11 Australasian and southeast Asian species, with eight also containing HupB, albeit at much lower concentrations. A H. elmeri (Herter) Holub plant from the Philippines had one of the highest HupA concentrations recorded (1.01 mg g−1 dry wt) and it also had the highest HupB content of all plants surveyed (0.34 mg g−1 dry wt). Intra-specific HupA and HupB concentrations were extremely variable, and at the intra-plant level, reproductive strobili were found to accumulate the highest HupA concentrations. Discussion and conclusion: Select Huperzia species from Australia and southeast Asia have potential as the starting material for establishing commercial HupA plantations, but the high intra-specific variability observed suggests that detailed screening is needed to isolate high huperzine-yielding individuals.
Applications in Plant Sciences | 2015
Dorset W. Trapnell; Rochelle R. Beasley; Stacey L. Lance; Ashley R. Field; Kenneth L. Jones
Premise of the study: Microsatellite loci were developed for the epiphytic pencil orchid Dendrobium calamiforme for population genetic and phylogeographic investigation of this Australian taxon. Methods and Results: Nineteen microsatellite loci were identified from an Illumina paired-end shotgun library of D. calamiforme. Polymorphism and genetic diversity were assessed in 24 individuals from five populations separated by a maximum distance of ∼80 km. All loci were polymorphic with two to 14 alleles per locus, expected heterozygosity ranging from 0.486 to 0.902, and probability of identity values ranging from 0.018 to 0.380. Conclusions: These novel markers will serve as valuable tools for investigation of levels of genetic diversity as well as patterns of gene flow, genetic structure, and phylogeographic history.
Molecular Phylogenetics and Evolution | 2018
Lucie Bauret; Ashley R. Field; Myriam Gaudeul; Marc-André Selosse; Germinal Rouhan
We explored the biogeographical history of a group of spore-bearing plants focusing on Phlegmariurus (Lycopodiaceae), a genus of lycophytes comprising ca. 250 species. Given its wide distribution in the Southern Hemisphere, Phlegmariurus provides a good model to address questions about the biogeographical processes underlying southern distributions, notably in Madagascar and surrounding islands, also called the Western Indian Ocean (WIO). Our aims were (i) to discuss the systematics of the Malagasy species in the light of molecular phylogenetic results, (ii) to provide the first dating analysis focused on Phlegmariurus and (iii) to understand the relative role of vicariance, dispersal and diversification in the origin of the Malagasy Phlegmariurus species. The phylogenetic relationships were inferred based on three plastid DNA regions (rbcL, trnH-psbA and trnL+trnL-trnF) and on a dataset comprising 93 species, including 16 Malagasy species (80% of the total Malagasy diversity for the genus). Our results highlighted the need to combine Malagasy Huperzia species in Phlegmariurus, as well as the polyphyly of widely distributed species: Phlegmariurus phlegmaria, P. squarrosus and P. verticillatus with the Malagasy species not belonging with the types of P. phlegmaria or P. squarrosus. This led us to propose new circumscriptions of Phlegmariurus species, especially in the WIO. Our dating analysis, relying on fossil calibrations, showed that Phlegmariurus would have originated in the Late Cretaceous and diversified in the Early Eocene. The biogeographical analysis highlighted uncertainties about the biogeographical origins of Phlegmariurus: the genus would have started to diversify in an ancestral range covering at least the Neotropics and Australasia. Hypotheses on the biogeographical history of Phlegmariurus were discussed, especially the roles of long distance dispersal, migration via Antarctica and via the Boreotropics. Six long distance dispersal events over the last 40 Ma would explain the Malagasy species diversity of Phlegmariurus, in combination with an important in situ diversification starting in the Miocene.
Molecular Phylogenetics and Evolution | 2018
Weston L. Testo; Benjamin Øllgaard; Ashley R. Field; Thaís Elias Almeida; Michael Kessler; David S. Barrington
The Neotropical clade of the lycophyte genus Phlegmariurus is comprised of an estimated 150 described species and exhibits exceptional morphological and ecological diversity. Because of their simple morphology, frequent convergent evolution, and the recentness of the groups diversification, the delimitation of species and species groups has remained challenging. Here, we present a robustly support phylogeny of Neotropical Phlegmariurus based on six chloroplast markers and ca. 70% of known species, and use ancestral character state reconstruction to investigate morphological evolution in the clade, and define natural species groups. The Neotropical species of Phlegmariurus form a clade that also includes a small number of Afro-Madagascan species. A morphologically and ecologically variable group of species from southeastern Brazil form a monophyletic group and represent a parallel radiation to principally Andean lineages. Species groups in Neotropical Phlegmariurus that were previously recognized based on morphology are not monophyletic. We find support for 11 morphologically cohesive and well-supported species groups. Morphological homoplasy is common in Phlegmariurus and complicates infrageneric classification of the Neotropical taxa. Our results provide a useful framework for identifying species groups and understanding patterns of morphological evolution in Neotropical Phlegmariurus. The radiation of the Brazilian species remains poorly understood and requires further study.
Florida Entomologist | 2015
Desley J. Tree; Laurence A. Mound; Ashley R. Field
Abstract Host specificity tests on Gynaikothrips ficorum (Marchal) and Gynaikothrips uzeli (Zimmerman) (Thysanoptera: Phlaeothripidae) have shown that under experimental conditions, G. ficorum will induce leaf galls on both Ficus benjamina L. and Ficus microcarpa L. f. (Rosales: Moraceae), but G. uzeli will induce galls only on F. benjamina. A further interesting aspect of the results is that gall induction by G. uzeli on F. benjamina appears to have been suppressed in the presence of F. microcarpa plants in the same cage. Liothrips takahashii (Moulton) (Thysanoptera: Phlaeothripidae), an inquiline in the galls of these Gynaikothrips, is reported for the first time from Australia, mainland China, Malaysia, Costa Rica, and western USA.
PhytoKeys | 2018
Ashley R. Field
Abstract Phlegmariurusvanuatuensis A.R.Field is described as a new species for plants endemic to the islands of Vanuatu that were previously identified with P.nummulariifolius (Blume) Ching. The Vanuatuan species differs from the widespread Asian-Oceanian species in several characteristics, most notably its acutely divergent leaf arrangement and thicker less branched fertile spikes. Phlegmariurusnummulariifolius is here re-circumscribed as plants occurring in Asia and into Oceania as far east as the Solomon Islands, being replaced eastwards by P.vanuatuensis. In addition, new nomenclatural combinations are made for Phlegmariurusaustralis, a species from Polynesia and for Phlegmariuruscopelandianus, a species from Malesia.