Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashley R. Murray is active.

Publication


Featured researches published by Ashley R. Murray.


Journal of Toxicology and Environmental Health | 2003

Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells

Anna A. Shvedova; Vincent Castranova; Elena R. Kisin; Diane Schwegler-Berry; Ashley R. Murray; Vadim Z. Gandelsman; Andrew D. Maynard; Paul Baron

Carbon nanotubes are new members of carbon allotropes similar to fullerenes and graphite. Because of their unique electrical, mechanical, and thermal properties, carbon nanotubes are important for novel applications in the electronics, aerospace, and computer industries. Exposure to graphite and carbon materials has been associated with increased incidence of skin diseases, such as carbon fiber dermatitis, hyperkeratosis, and naevi. We investigated adverse effects of single-wall carbon nanotubes (SWCNT) using a cell culture of immortalized human epidermal keratinocytes (HaCaT). After 18 h of exposure of HaCaT to SWCNT, oxidative stress and cellular toxicity were indicated by formation of free radicals, accumulation of peroxidative products, antioxidant depletion, and loss of cell viability. Exposure to SWCNT also resulted in ultrastructural and morphological changes in cultured skin cells. These data indicate that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis

Anna A. Shvedova; Elena R. Kisin; Ashley R. Murray; V. J. Johnson; Olga Gorelik; Sivaram Arepalli; A. F. Hubbs; Robert R. Mercer; Phouthone Keohavong; N. Sussman; J. Jin; J. Yin; S. Stone; B. T. Chen; Gregory J. Deye; Andrew D. Maynard; Vincent Castranova; Paul A. Baron; Valerian E. Kagan

Nanomaterials are frontier technological products used in different manufactured goods. Because of their unique physicochemical, electrical, mechanical, and thermal properties, single-walled carbon nanotubes (SWCNT) are finding numerous applications in electronics, aerospace devices, computers, and chemical, polymer, and pharmaceutical industries. SWCNT are relatively recently discovered members of the carbon allotropes that are similar in structure to fullerenes and graphite. Previously, we (47) have reported that pharyngeal aspiration of purified SWCNT by C57BL/6 mice caused dose-dependent granulomatous pneumonia, oxidative stress, acute inflammatory/cytokine responses, fibrosis, and decrease in pulmonary function. To avoid potential artifactual effects due to instillation/agglomeration associated with SWCNT, we conducted inhalation exposures using stable and uniform SWCNT dispersions obtained by a newly developed aerosolization technique (2). The inhalation of nonpurified SWCNT (iron content of 17.7% by weight) at 5 mg/m(3), 5 h/day for 4 days was compared with pharyngeal aspiration of varying doses (5-20 microg per mouse) of the same SWCNT. The chain of pathological events in both exposure routes was realized through synergized interactions of early inflammatory response and oxidative stress culminating in the development of multifocal granulomatous pneumonia and interstitial fibrosis. SWCNT inhalation was more effective than aspiration in causing inflammatory response, oxidative stress, collagen deposition, and fibrosis as well as mutations of K-ras gene locus in the lung of C57BL/6 mice.


Nature Nanotechnology | 2010

Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation

Valerian E. Kagan; Nagarjun V. Konduru; Weihong Feng; Brett L. Allen; Jennifer Conroy; Yuri Volkov; Irina I. Vlasova; Natalia A. Belikova; Naveena Yanamala; Alexander A. Kapralov; Yulia Y. Tyurina; Jingwen Shi; Elena R. Kisin; Ashley R. Murray; Jonathan Franks; Donna B. Stolz; Pingping Gou; Judith Klein-Seetharaman; Bengt Fadeel; Alexander Star; Anna A. Shvedova

We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase catalyse the biodegradation of single-walled carbon nanotubes in vitro, in neutrophils and to a lesser degree in macrophages. Molecular modelling suggests that interactions of basic amino acids of the enzyme with the carboxyls on the carbon nanotubes position the nanotubes near the catalytic site. Importantly, the biodegraded nanotubes do not generate an inflammatory response when aspirated into the lungs of mice. Our findings suggest that the extent to which carbon nanotubes are biodegraded may be a major determinant of the scale and severity of the associated inflammatory responses in exposed individuals.


Toxicology | 2009

Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes

Ashley R. Murray; Elena R. Kisin; Steve Leonard; Shih-Houng Young; Choudari Kommineni; Valerian E. Kagan; Vincent Castranova; Anna A. Shvedova

Single-walled carbon nanotubes (SWCNT) represent a novel material with unique electronic and mechanical properties. The extremely small size ( approximately 1 nm diameter) renders their chemical and physical properties unique. A variety of different techniques are available for the production of SWCNT; however, the most common is via the disproportionation of gaseous carbon molecules supported on catalytic iron particles (high-pressure CO conversion, HiPCO). The physical nature of SWCNT may lead to dermal penetration following deposition on exposed skin. This dermal deposition provides a route of exposure which is important to consider when evaluating SWCNT toxicity. The dermal effects of SWCNT are largely unknown. We hypothesize that SWCNT may be toxic to the skin. We further hypothesize that SWCNT toxicity may be dependent upon the metal (particularly iron) content of SWCNT via the metals ability to interact with the skin, initiate oxidative stress, and induce redox-sensitive transcription factors thereby affecting/leading to inflammation. To test this hypothesis, the effects of SWCNT were assessed both in vitro and in vivo using EpiDerm FT engineered skin, murine epidermal cells (JB6 P+), and immune-competent hairless SKH-1 mice. Engineered skin exposed to SWCNT showed increased epidermal thickness and accumulation and activation of dermal fibroblasts which resulted in increased collagen as well as release of pro-inflammatory cytokines. Exposure of JB6 P+ cells to unpurified SWCNT (30% iron) resulted in the production of ESR detectable hydroxyl radicals and caused a significant dose-dependent activation of AP-1. No significant changes in AP-1 activation were detected when partially purified SWCNT (0.23% iron) were introduced to the cells. However, NFkappaB was activated in a dose-dependent fashion by exposure to both unpurified and partially purified SWCNT. Topical exposure of SKH-1 mice (5 days, with daily doses of 40 microg/mouse, 80 microg/mouse, or 160 microug/mouse) to unpurified SWCNT caused oxidative stress, depletion of glutathione, oxidation of protein thiols and carbonyls, elevated myeloperoxidase activity, an increase of dermal cell numbers, and skin thickening resulting from the accumulation of polymorphonuclear leukocytes (PMNs) and mast cells. Altogether, these data indicated that topical exposure to unpurified SWCNT, induced free radical generation, oxidative stress, and inflammation, thus causing dermal toxicity.


Journal of Toxicology and Environmental Health | 2007

Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells.

Elena R. Kisin; Ashley R. Murray; Michael Keane; Xiao-Chun Shi; Diane Schwegler-Berry; Olga Gorelik; Sivaram Arepalli; Vincent Castranova; William E. Wallace; Valerian E. Kagan; Anna A. Shvedova

With the development of nanotechnology, there is a tremendous growth of the application of nanomaterials, which increases the risk of human exposure to these nanomaterials through inhalation, ingestion, and dermal penetration. Among different types of nanoparticles, single-walled carbon nanotubes (SWCNT) with extremely small size (1 nm in diameter) exhibit extraordinary properties and offer possibilities to create materials with astounding features. Since the release of nanoparticles in an enclosed environment is of great concern, a study of possible genotoxic effects is important. Our previous data showed that pharyngeal aspiration of SWCNT elicited pulmonary effects in C57BL/6 mice that was promoted by a robust, acute inflammatory reaction with early onset resulting in progressive interstitial fibrogenic response and the formation of granulomas. In the present study, the genotoxic potential of SWCNT was evaluated in vitro. The genotoxic effects of nanoparticles were examined using three different test systems: the comet assay and micronucleus (MN) test in a lung fibroblast (V79) cell line, and the Salmonella gene mutation assay in strains YG1024/YG1029. Cytotoxicity tests showed loss of viability in a concentration- and time-dependent manner after exposure of cells to SWCNT. Results from the comet assay demonstrated the induction of DNA damage after only 3 h of incubation with 96 μg/cm2 of SWCNT. The MN test indicated some but not significant micronucleus induction by SWCNT in the V79 cell line at the highest concentrations tested. With two different strains of Salmonella typhimurium, no mutations were found following SWCNT exposure.


PLOS ONE | 2012

Impaired Clearance and Enhanced Pulmonary Inflammatory/Fibrotic Response to Carbon Nanotubes in Myeloperoxidase-Deficient Mice

Anna A. Shvedova; Alexandr A. Kapralov; Wei Hong Feng; Elena R. Kisin; Ashley R. Murray; Robert R. Mercer; Claudette M. St. Croix; Megan A. Lang; Simon C. Watkins; Nagarjun V. Konduru; Brett L. Allen; Jennifer Conroy; Gregg P. Kotchey; Bashir M. Mohamed; Aidan D. Meade; Yuri Volkov; Alexander Star; Bengt Fadeel; Valerian E. Kagan

Advancement of biomedical applications of carbonaceous nanomaterials is hampered by their biopersistence and pro-inflammatory action in vivo. Here, we used myeloperoxidase knockout B6.129X1-MPO (MPO k/o) mice and showed that oxidation and clearance of single walled carbon nanotubes (SWCNT) from the lungs of these animals after pharyngeal aspiration was markedly less effective whereas the inflammatory response was more robust than in wild-type C57Bl/6 mice. Our results provide direct evidence for the participation of MPO – one of the key-orchestrators of inflammatory response – in the in vivo pulmonary oxidative biodegradation of SWCNT and suggest new ways to control the biopersistence of nanomaterials through genetic or pharmacological manipulations.


Toxicology and Applied Pharmacology | 2011

Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos?

Elena R. Kisin; Ashley R. Murray; Linda M. Sargent; David T. Lowry; Madalina M. Chirila; K.J. Siegrist; Diane Schwegler-Berry; Steve Leonard; Vincent Castranova; Bengt Fadeel; Valerian E. Kagan; Anna A. Shvedova

The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf®-III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in the lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos>CNF>SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominantly centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity.


PLOS ONE | 2009

Phosphatidylserine Targets Single-Walled Carbon Nanotubes to Professional Phagocytes In Vitro and In Vivo

Nagarjun V. Konduru; Yulia Y. Tyurina; Weihong Feng; Liana V. Basova; Natalia A. Belikova; Hülya Bayır; Katherine A. Clark; Marc Rubin; Donna B. Stolz; Helen Vallhov; Annika Scheynius; Erika Witasp; Bengt Fadeel; Padmakar D. Kichambare; Alexander Star; Elena R. Kisin; Ashley R. Murray; Anna A. Shvedova; Valerian E. Kagan

Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid “eat-me” signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells.


Particle and Fibre Toxicology | 2012

Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos

Ashley R. Murray; Elena R. Kisin; Alexey V. Tkach; Naveena Yanamala; Robert R. Mercer; Shih-Houng Young; Bengt Fadeel; Valerian E. Kagan; Anna A. Shvedova

BackgroundCarbon nanotubes (CNT) and carbon nanofibers (CNF) are allotropes of carbon featuring fibrous morphology. The dimensions and high aspect ratio of CNT and CNF have prompted the comparison with naturally occurring asbestos fibers which are known to be extremely pathogenic. While the toxicity and hazardous outcomes elicited by airborne exposure to single-walled CNT or asbestos have been widely reported, very limited data are currently available describing adverse effects of respirable CNF.ResultsHere, we assessed pulmonary inflammation, fibrosis, oxidative stress markers and systemic immune responses to respirable CNF in comparison to single-walled CNT (SWCNT) and asbestos. Pulmonary inflammatory and fibrogenic responses to CNF, SWCNT and asbestos varied depending upon the agglomeration state of the particles/fibers. Foci of granulomatous lesions and collagen deposition were associated with dense particle-like SWCNT agglomerates, while no granuloma formation was found following exposure to fiber-like CNF or asbestos. The average thickness of the alveolar connective tissue - a marker of interstitial fibrosis - was increased 28 days post SWCNT, CNF or asbestos exposure. Exposure to SWCNT, CNF or asbestos resulted in oxidative stress evidenced by accumulations of 4-HNE and carbonylated proteins in the lung tissues. Additionally, local inflammatory and fibrogenic responses were accompanied by modified systemic immunity, as documented by decreased proliferation of splenic T cells ex vivo on day 28 post exposure. The accuracies of assessments of effective surface area for asbestos, SWCNT and CNF (based on geometrical analysis of their agglomeration) versus estimates of mass dose and number of particles were compared as predictors of toxicological outcomes.ConclusionsWe provide evidence that effective surface area along with mass dose rather than specific surface area or particle number are significantly correlated with toxicological responses to carbonaceous fibrous nanoparticles. Therefore, they could be useful dose metrics for risk assessment and management.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons.

Anna A. Shvedova; Naveena Yanamala; Elena R. Kisin; Alexey V. Tkach; Ashley R. Murray; Ann F. Hubbs; Madalina M. Chirila; Phouthone Keohavong; Lyudmila P. Sycheva; Valerian E. Kagan; Vincent Castranova

The hallmark geometric feature of single-walled carbon nanotubes (SWCNT) and carbon nanofibers (CNF), high length to width ratio, makes them similar to a hazardous agent, asbestos. Very limited data are available concerning long-term effects of pulmonary exposure to SWCNT or CNF. Here, we compared inflammatory, fibrogenic, and genotoxic effects of CNF, SWCNT, or asbestos in mice 1 yr after pharyngeal aspiration. In addition, we compared pulmonary responses to SWCNT by bolus dosing through pharyngeal aspiration and inhalation 5 h/day for 4 days, to evaluate the effect of dose rate. The aspiration studies showed that these particles can be visualized in the lung at 1 yr postexposure, whereas some translocate to lymphatics. All these particles induced chronic bronchopneumonia and lymphadenitis, accompanied by pulmonary fibrosis. CNF and asbestos were found to promote the greatest degree of inflammation, followed by SWCNT, whereas SWCNT were the most fibrogenic of these three particles. Furthermore, SWCNT induced cytogenetic alterations seen as micronuclei formation and nuclear protrusions in vivo. Importantly, inhalation exposure to SWCNT showed significantly greater inflammatory, fibrotic, and genotoxic effects than bolus pharyngeal aspiration. Finally, SWCNT and CNF, but not asbestos exposures, increased the incidence of K-ras oncogene mutations in the lung. No increased lung tumor incidence occurred after 1 yr postexposure to SWCNT, CNF, and asbestos. Overall, our data suggest that long-term pulmonary toxicity of SWCNT, CNF, and asbestos is defined, not only by their chemical composition, but also by the specific surface area and type of exposure.

Collaboration


Dive into the Ashley R. Murray's collaboration.

Top Co-Authors

Avatar

Anna A. Shvedova

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Elena R. Kisin

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Valerian E. Kagan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Choudari Kommineni

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Alexey V. Tkach

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Diane Schwegler-Berry

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Naveena Yanamala

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Yulia Y. Tyurina

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge