Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashok Dongre is active.

Publication


Featured researches published by Ashok Dongre.


Cancer Research | 2009

The Mechanisms of Differential Sensitivity to an Insulin-like Growth Factor-1 Receptor Inhibitor (BMS-536924) and Rationale for Combining with EGFR/HER2 Inhibitors

Fei Huang; Ann Greer; Warren Hurlburt; Xia Han; Rameh Hafezi; Gayle M. Wittenberg; Karen A. Reeves; Jiwen Chen; Douglas Michael Robinson; Aixin Li; Francis Y. Lee; Marco M. Gottardis; Edwin A. Clark; Lee J. Helman; Ricardo M. Attar; Ashok Dongre; Joan M. Carboni

Overexpression and enhanced activity of insulin-like growth factor-I receptor (IGF-IR) in diverse tumor types make it an attractive target for cancer therapy. BMS-536924 is a potent small molecule inhibitor of IGF-IR, which shows antitumor activity in multiple tumor models, including sarcoma. To facilitate the development of IGF-IR inhibitors as cancer therapy, identification of biomarkers for selecting patients most likely to derive clinical benefit is needed. To do so, 28 sarcoma and neuroblastoma cell lines were screened for in vitro response to BMS-536924 to identify sensitive and resistant cell lines. Notably, Ewings sarcoma, rhabdomyosarcoma, and neuroblastoma are more responsive to BMS-536924, suggesting these specific subtypes may represent potential targeted patient subpopulations for the IGF-IR inhibitor. Gene expression and protein profiling were performed on these cell lines, and candidate biomarkers correlating with intrinsic and/or acquired resistance to BMS-536924 were identified. IGF-I, IGF-II, and IGF-IR were highly expressed in sensitive cell lines, whereas IGFBP-3 and IGFBP-6 were highly expressed in resistant lines. Overexpression of epidermal growth factor receptor (EGFR) and its ligands in resistant cell lines may represent one possible resistance mechanism by the adaptation of IGF-IR-independent growth using alternative signaling pathways. Based on cross-talk between IGF-IR and EGFR pathways, combination studies to target both pathways were performed, and enhanced inhibitory activities were observed. These results provide a strategy for testing combinations of IGF-IR inhibitors with other targeted therapies in clinical studies to achieve improved patient outcomes. Further exploration of mechanisms for intrinsic and acquired drug resistance by these preclinical studies may lead to more rationally designed drugs that target multiple pathways for enhanced antitumor efficacy.


Nature Immunology | 2013

The psoriasis-associated D10N variant of the adaptor Act1 with impaired regulation by the molecular chaperone hsp90

Chenhui Wang; Ling Wu; Katarzyna Bulek; Bradley N. Martin; Jarod A. Zepp; Zizhen Kang; Caini Liu; Tomasz Herjan; Saurav Misra; Julie Carman; Ji-Wei Gao; Ashok Dongre; Shujie Han; Kevin D. Bunting; Jennifer S. Ko; Hui Xiao; Vijay K. Kuchroo; Wenjun Ouyang; Xiaoxia Li

Act1 is an essential adaptor molecule in IL-17-mediated signaling and is recruited to the IL-17 receptor upon IL-17 stimulation. Here, we report that Act1 is a client protein of the molecular chaperone, Hsp90. The Act1 variant (D10N) linked to psoriasis susceptibility is defective in its interaction with Hsp90, resulting in a global loss of Act1 function. Act1-/- mice modeled the mechanistic link between Act1 loss of function and psoriasis susceptibility. Although Act1 is necessary for IL-17-mediated inflammation, Act1-/- mice exhibited a hyper TH17 response and developed spontaneous IL-22-dependent skin inflammation. In the absence of IL-17-signaling, IL-22 is the main contributor to skin inflammation, providing a molecular mechanism for the association of Act1 (D10N) with psoriasis susceptibility.


Immunity | 2012

Inactivation of the Enzyme GSK3α by the Kinase IKKi Promotes AKT-mTOR Signaling Pathway that Mediates Interleukin-1-Induced Th17 Cell Maintenance

Muhammet Fatih Gulen; Katarzyna Bulek; Hui Xiao; Minjia Yu; Ji Gao; Lillian Sun; Eléonore Beurel; Oksana Kaidanovich-Beilin; Paul L. Fox; Paul E. DiCorleto; Jian An Wang; Jun Qin; David Wald; James R. Woodgett; Richard S. Jope; Julie Carman; Ashok Dongre; Xiaoxia Li

Interleukin-1 (IL-1)-induced activation of the mTOR kinase pathway has major influences on Th17 cell survival, proliferation, and effector function. Via biochemical and genetic approaches, the kinases IKKi and GSK3α were identified as the critical intermediate signaling components for IL-1-induced AKT activation, which in turn activated mTOR. Although insulin-induced AKT activation is known to phosphorylate and inactivate GSK3α and GSK3β, we found that GSK3α but not GSK3β formed a constitutive complex to phosphorylate and suppress AKT activation, showing that a reverse action from GSK to AKT can take place. Upon IL-1 stimulation, IKKi was activated to mediate GSK3α phosphorylation at S21, thereby inactivating GSK3α to promote IL-1-induced AKT-mTOR activation. Thus, IKKi has a critical role in Th17 cell maintenance and/or proliferation through the GSK-AKT-mTOR pathway, implicating the potential of IKKi as a therapeutic target.


Rapid Communications in Mass Spectrometry | 2014

Development of a highly sensitive liquid chromatography/tandem mass spectrometry method to quantify total and free levels of a target protein, interferon‐gamma‐inducible protein‐10, at picomolar levels in human serum

Hongwei Zhang; Qing Xiao; Baomin Xin; Wendy L. Trigona; Adrienne A. Tymiak; Ashok Dongre; Timothy Olah

RATIONALE Liquid chromatography/tandem mass spectrometry (LC/MS/MS) assays are increasingly being used for absolute quantitation of proteins due to high specificity and low cost. However, the major challenge for the LC/MS method is insufficient sensitivity. This paper details the strategies developed to maximize the sensitivity from aspects of chromatography, mass spectrometry, and sample preparation to achieve a highly sensitive LC/MS method. METHODS The method is based on the LC/MS/MS measurement of a surrogate peptide generated from trypsin digestion of interferon-gamma-inducible protein-10 (IP-10). The sample preparation strategy involved selectively extracting IP-10 and removing high-abundance serum proteins through acidified protein precipitation (PPT). It was revealed in this work that these high-abundance serum proteins, if not separated from the protein of interest, could cause significant ionization saturation and high background noise in selected reaction monitoring (SRM), leading to a 100-fold higher lower limit of quantification (LLOQ). RESULTS Our method demonstrated that the acidified PPT could be optimized to selectively extract the protein of interest with full recovery of 97% to 103%, while the high-abundance serum proteins could be effectively removed with minimal matrix effect of 90% to 93%. For the first time, a highly sensitive LC/MS method with a LLOQ of 31.62 pM for the quantitation of IP-10 has been achieved, which is a 100-fold improvement over the generic method. CONCLUSIONS The described method offers excellent sensitivity with advantages of being antibody reagent independent and leads to significant cost and time savings. It has been successfully employed to determine both total and free IP-10 levels in human serum samples. This method development strategy may also be applied to other small proteins.


Nature Communications | 2017

IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression.

Chenhui Wang; Cun Jin Zhang; Bradley N. Martin; Katarzyna Bulek; Zizhen Kang; Junjie Zhao; Guanglin Bian; Julie Carman; Ji Gao; Ashok Dongre; Haibo Xue; Stephen D. Miller; Youcun Qian; Dolores Hambardzumyan; Tom Hamilton; Richard M. Ransohoff; Xiaoxia Li

NOTCH1 signalling contributes to defective remyelination by impairing differentiation of oligodendrocyte progenitor cells (OPCs). Here we report that IL-17 stimulation induces NOTCH1 activation in OPCs, contributing to Th17-mediated demyelinating disease. Mechanistically, IL-17R interacts with NOTCH1 via the extracellular domain, which facilitates the cleavage of NOTHC1 intracellular domain (NICD1). IL-17-induced NOTCH1 activation results in the interaction of IL-17R adaptor Act1 with NICD1, followed by the translocation of the Act1–NICD1 complex into the nucleus. Act1–NICD1 are recruited to the promoters of several NOTCH1 target genes (including STEAP4, a metalloreductase important for inflammation and cell proliferation) that are specifically induced in the spinal cord by Th17 cells. A decoy peptide disrupting the IL-17RA–NOTCH1 interaction inhibits IL-17-induced NOTCH1 activation and attenuates Th17-mediated experimental autoimmune encephalitis (EAE). Taken together, these findings demonstrate critical crosstalk between the IL-17 and NOTCH1 pathway, regulating Th17-induced inflammatory and proliferative genes to promote demyelinating disease.


Chemical Research in Toxicology | 2014

Identification of human liver microsomal proteins adducted by a reactive metabolite using shotgun proteomics.

Yanou Yang; Qing Xiao; W. Griffith Humphreys; Ashok Dongre; Yue-Zhong Shu

Covalent modification of cellular proteins by chemically reactive compounds/metabolites has the potential to disrupt biological function and elicit serious adverse drug reactions. Information on the nature and binding patterns of protein targets are critical toward understanding the mechanism of drug induced toxicity. Protein covalent binding studies established in liver microsomes can quantitively estimate the extent of protein modification, but they provide little information on the nature of the modified proteins. In this article, we describe a label-free shotgun proteomic workflow for the identification of target proteins modified in situ by reactive metabolites in human liver microsome incubations. First, we developed a shotgun proteomic workflow for the characterization of the human liver microsomal subproteome, which consists of predominately membrane-bound proteins. Human liver microsomes were solubilized with a combination of MS-compatible organic solvents followed by protein reduction, alkylation, and tryptic digestion. The unmodified samples were analyzed by UHPLC-MS/MS, and the proteins were identified by database searching. This workflow led to the successful identification of 329 human liver microsomal subproteome proteins with 1% FDR (false discovery rate). The same method was then applied to identify the modifications of human liver microsomal proteins by a known reactive metabolite 2-(methylsulfonyl)benzo[d]thiazole (2), either after incubation directly with 2 or with its parent compound 2-(methylthio)benzo[d]thiazole (1). A total of 19 modified constituent peptides which could be mapped to 18 proteins were identified in human liver microsomes incubated directly with 2. Among these, 5 modified constituent peptides which could be mapped to 4 proteins were identified in incubation with 1, which is known to generate 2 in human liver microsomal incubations. This label-free workflow is generally applicable to the identification and characterization of proteins adducted with reactive metabolites in complex matrices and may serve as a valuable tool to understand the link between protein targets and clinically relevant toxicities.


bioRxiv | 2018

Degradation of the extracellular matrix is part of the pathology of ulcerative colitis

Stefan Kirov; Ariella Sasson; Clarence Zhang; Scott D. Chasalow; Ashok Dongre; Hanno Steen; Allan Stensballe; Vibeke Andersen; Svend Birkelund; Tue Bjerg Bennike

The scientific value of re-analyzing existing datasets is often proportional to the complexity of the data. Proteomics data are inherently complex and can be analyzed at many levels, including proteins, peptides, and post-translational modifications to verify and/or develop new hypotheses. In this paper, we present our re-analysis of a previously published study comparing colon biopsy samples from ulcerative colitis (UC) patients to non-affected controls. In addition to confirming and reinforcing the original finding of upregulation of neutrophil extracellular traps (NETs), we report novel findings, including that Extracellular Matrix (ECM) degradation and neutrophil maturation are involved in the pathology of UC. The pharmaceutically most relevant differential protein expressions were confirmed using immunohistochemistry as an orthogonal method. As part of this study, we also compared proteomics data to previously published mRNA expression data. These comparisons indicated compensatory regulation at transcription levels of the ECM proteins we identified and open possible new venues for drug discovery.


Nature Communications | 2018

Act1 is a negative regulator in T and B cells via direct inhibition of STAT3

Cun Jin Zhang; Chenhui Wang; Meiling Jiang; Chunfang Gu; Jianxin Xiao; Xing Chen; Bradley N. Martin; Fangqiang Tang; Erin Yamamoto; Yibo Xian; Han Wang; Fengling Li; R. Balfour Sartor; Howard Smith; M. Elaine Husni; Fu Dong Shi; Ji Gao; Julie Carman; Ashok Dongre; Susan McKarns; Ken Coppieters; Trine N. Jørgensen; Warren J. Leonard; Xiaoxia Li

Although Act1 (adaptor for IL-17 receptors) is necessary for IL-17-mediated inflammatory responses, Act1- (but not Il17ra-, Il17rc-, or Il17rb-) deficient mice develop spontaneous SLE- and Sjögren’s-like diseases. Here, we show that Act1 functions as a negative regulator in T and B cells via direct inhibition of STAT3. Mass spectrometry analysis detected an Act1–STAT3 complex, deficiency of Act1 (but not Il17ra-, Il17rc-, or Il17rb) results in hyper IL-23- and IL-21-induced STAT3 activation in T and B cells, respectively. IL-23R deletion or blockade of IL-21 ameliorates SLE- and Sjögren’s-like diseases in Act1−/− mice. Act1 deficiency results in hyperactivated follicular Th17 cells with elevated IL-21 expression, which promotes T–B cell interaction for B cell expansion and antibody production. Moreover, anti-IL-21 ameliorates the SLE- and Sjögren’s-like diseases in Act1-deficient mice. Thus, IL-21 blocking antibody might be an effective therapy for treating SLE- and Sjögren’s-like syndrome in patients containing Act1 mutation.Adaptor for IL-17 receptors (Act1) is known to be crucial for IL-17-mediated immune responses. Here the authors show that Act1 also functions as a negative regulator of T and B cells by direct inhibition of STAT3.


eLife | 2017

IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs

Hao Zhou; Katarzyna Bulek; Xiao Li; Tomasz Herjan; Minjia Yu; Wen Qian; Han Wang; Gao Zhou; Xing Chen; Hui Yang; Lingzi Hong; Junjie Zhao; Luke Qin; Koichi Fukuda; Annette Flotho; Ji Gao; Ashok Dongre; Julie Carman; Zizhen Kang; Bing Su; Timothy S. Kern; Jonathan D. Smith; Thomas A. Hamilton; Frauke Melchior; Paul L. Fox; Xiaoxia Li

Expression of inflammatory genes is determined in part by post-transcriptional regulation of mRNA metabolism but how stimulus- and transcript-dependent nuclear export influence is poorly understood. Here, we report a novel pathway in which LPS/TLR4 engagement promotes nuclear localization of IRAK2 to facilitate nuclear export of a specific subset of inflammation-related mRNAs for translation in murine macrophages. IRAK2 kinase activity is required for LPS-induced RanBP2-mediated IRAK2 sumoylation and subsequent nuclear translocation. Array analysis showed that an SRSF1-binding motif is enriched in mRNAs dependent on IRAK2 for nuclear export. Nuclear IRAK2 phosphorylates SRSF1 to reduce its binding to target mRNAs, which promotes the RNA binding of the nuclear export adaptor ALYREF and nuclear export receptor Nxf1 loading for the export of the mRNAs. In summary, LPS activates a nuclear function of IRAK2 that facilitates the assembly of nuclear export machinery to export selected inflammatory mRNAs to the cytoplasm for translation.


Acta Pharmaceutica Sinica B | 2017

Comparative untargeted proteomic analysis of ADME proteins and tumor antigens for tumor cell lines

Xiaomei Gu; Qing Xiao; Qian Ruan; Yue-Zhong Shu; Ashok Dongre; Ramaswamy Iyer; W. Griffith Humphreys; Yurong Lai

In the present study, total membrane proteins from tumor cell lines including HepG2, Hep3B2, H226, Ovcar3 and N87 were extracted and digested with γLysC and trypsin. The resulting peptide lysate were pre-fractionated and subjected to untargeted quantitative proteomics analysis using a high resolution mass spectrometer. The mass spectra were processed by the MaxQuant and the protein abundances were estimated using total peak area (TPA) method. A total of 6037 proteins were identified, and the analysis resulted in the identification of 2647 membrane proteins. Of those, tumor antigens and absorption, metabolism, disposition and elimination (ADME) proteins including UDP-glucuronosyltransferase, cytochrome P450, solute carriers and ATP-binding cassette transporters were detected and disclosed significant variations among the cell lines. The principal component analysis was performed for the cluster of cell lines. The results demonstrated that H226 is closely related with N87, while Hep3B2 aligned with HepG2. The protein cluster of Ovcar3 was apart from that of other cell lines investigated. By providing for the first time quantitative untargeted proteomics analysis, the results delineated the expression profiles of membrane proteins. These findings provided a useful resource for selecting targets of choice for anticancer therapy through advancing data obtained from preclinical tumor cell line models to clinical outcomes.

Collaboration


Dive into the Ashok Dongre's collaboration.

Top Co-Authors

Avatar

Ji Gao

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Opiteck

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge