Ashton A. Connor
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ashton A. Connor.
Nature | 2016
Faiyaz Notta; Michelle Chan-Seng-Yue; Mathieu Lemire; Yilong Li; Gavin Wilson; Ashton A. Connor; Robert E. Denroche; Sheng Ben Liang; Andrew M.K. Brown; Jaeseung C. Kim; Tao Wang; Jared T. Simpson; Timothy Beck; Ayelet Borgida; Nicholas Buchner; Dianne Chadwick; Sara Hafezi-Bakhtiari; John E. Dick; Lawrence E. Heisler; Michael A. Hollingsworth; Emin Ibrahimov; Gun Ho Jang; Jeremy Johns; Lars G T Jorgensen; Calvin Law; Olga Ludkovski; Ilinca Lungu; Karen Ng; Danielle Pasternack; Gloria M. Petersen
Pancreatic cancer, a highly aggressive tumour type with uniformly poor prognosis, exemplifies the classically held view of stepwise cancer development. The current model of tumorigenesis, based on analyses of precursor lesions, termed pancreatic intraepithelial neoplasm (PanINs) lesions, makes two predictions: first, that pancreatic cancer develops through a particular sequence of genetic alterations (KRAS, followed by CDKN2A, then TP53 and SMAD4); and second, that the evolutionary trajectory of pancreatic cancer progression is gradual because each alteration is acquired independently. A shortcoming of this model is that clonally expanded precursor lesions do not always belong to the tumour lineage, indicating that the evolutionary trajectory of the tumour lineage and precursor lesions can be divergent. This prevailing model of tumorigenesis has contributed to the clinical notion that pancreatic cancer evolves slowly and presents at a late stage. However, the propensity for this disease to rapidly metastasize and the inability to improve patient outcomes, despite efforts aimed at early detection, suggest that pancreatic cancer progression is not gradual. Here, using newly developed informatics tools, we tracked changes in DNA copy number and their associated rearrangements in tumour-enriched genomes and found that pancreatic cancer tumorigenesis is neither gradual nor follows the accepted mutation order. Two-thirds of tumours harbour complex rearrangement patterns associated with mitotic errors, consistent with punctuated equilibrium as the principal evolutionary trajectory. In a subset of cases, the consequence of such errors is the simultaneous, rather than sequential, knockout of canonical preneoplastic genetic drivers that are likely to set-off invasive cancer growth. These findings challenge the current progression model of pancreatic cancer and provide insights into the mutational processes that give rise to these aggressive tumours.
Nature Medicine | 2015
Ling Huang; Audrey Holtzinger; Ishaan Jagan; Michael BeGora; Ines Lohse; Nicholas Ngai; Cristina Nostro; Rennian Wang; Lakshmi Muthuswamy; Howard C. Crawford; C.H. Arrowsmith; Steve E. Kalloger; Daniel John Renouf; Ashton A. Connor; Sean Cleary; David F. Schaeffer; Michael H. Roehrl; Ming-Sound Tsao; Steven Gallinger; Gordon Keller; Senthil K. Muthuswamy
There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53R175H induces cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. We also define culture conditions for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture and phenotypic heterogeneity of the primary tumor and retain patient-specific physiological changes, including hypoxia, oxygen consumption, epigenetic marks and differences in sensitivity to inhibition of the histone methyltransferase EZH2. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies.
Gastroenterology | 2015
Robert C. Grant; Iris Selander; Ashton A. Connor; Shamini Selvarajah; Ayelet Borgida; Laurent Briollais; Gloria M. Petersen; Jordan Lerner-Ellis; Spring Holter; Steven Gallinger
BACKGROUND & AIMS We investigated the prevalence of germline mutations in APC, ATM, BRCA1, BRCA2, CDKN2A, MLH1, MSH2, MSH6, PALB2, PMS2, PRSS1, STK11, and TP53 in patients with pancreatic cancer. METHODS The Ontario Pancreas Cancer Study enrolls consenting participants with pancreatic cancer from a province-wide electronic pathology database; 708 probands were enrolled from April 2003 through August 2012. To improve the precision of BRCA2 prevalence estimates, 290 probands were selected from 3 strata, based on family history of breast and/or ovarian cancer, pancreatic cancer, or neither. Germline DNA was analyzed by next-generation sequencing using a custom multiple-gene panel. Mutation prevalence estimates were calculated from the sample for the entire cohort. RESULTS Eleven pathogenic mutations were identified: 3 in ATM, 1 in BRCA1, 2 in BRCA2, 1 in MLH1, 2 in MSH2, 1 in MSH6, and 1 in TP53. The prevalence of mutations in all 13 genes was 3.8% (95% confidence interval, 2.1%-5.6%). Carrier status was associated significantly with breast cancer in the proband or first-degree relative (P < .01), and with colorectal cancer in the proband or first-degree relative (P < .01), but not family history of pancreatic cancer, age at diagnosis, or stage at diagnosis. Of patients with a personal or family history of breast and colorectal cancer, 10.7% (95% confidence interval, 4.4%-17.0%) and 11.1% (95% confidence interval, 3.0%-19.1%) carried pathogenic mutations, respectively. CONCLUSIONS A small but clinically important proportion of pancreatic cancer is associated with mutations in known predisposition genes. The heterogeneity of mutations identified in this study shows the value of using a multiple-gene panel in pancreatic cancer.
JAMA Oncology | 2017
Ashton A. Connor; Robert E. Denroche; Gun Ho Jang; Lee Timms; Sangeetha N. Kalimuthu; Iris Selander; Treasa McPherson; Gavin Wilson; Michelle Chan-Seng-Yue; Ivan Borozan; Vincent Ferretti; Robert C. Grant; Ilinca Lungu; Eithne Costello; William Greenhalf; Daniel H. Palmer; Paula Ghaneh; John P. Neoptolemos; Markus W. Büchler; Gloria M. Petersen; Sarah P. Thayer; Michael A. Hollingsworth; Alana Sherker; Daniel Durocher; Neesha C. Dhani; David W. Hedley; Stefano Serra; Aaron Pollett; Michael H. Roehrl; Prashant Bavi
Importance Outcomes for patients with pancreatic ductal adenocarcinoma (PDAC) remain poor. Advances in next-generation sequencing provide a route to therapeutic approaches, and integrating DNA and RNA analysis with clinicopathologic data may be a crucial step toward personalized treatment strategies for this disease. Objective To classify PDAC according to distinct mutational processes, and explore their clinical significance. Design, Setting, and Participants We performed a retrospective cohort study of resected PDAC, using cases collected between 2008 and 2015 as part of the International Cancer Genome Consortium. The discovery cohort comprised 160 PDAC cases from 154 patients (148 primary; 12 metastases) that underwent tumor enrichment prior to whole-genome and RNA sequencing. The replication cohort comprised 95 primary PDAC cases that underwent whole-genome sequencing and expression microarray on bulk biospecimens. Main Outcomes and Measures Somatic mutations accumulate from sequence-specific processes creating signatures detectable by DNA sequencing. Using nonnegative matrix factorization, we measured the contribution of each signature to carcinogenesis, and used hierarchical clustering to subtype each cohort. We examined expression of antitumor immunity genes across subtypes to uncover biomarkers predictive of response to systemic therapies. Results The discovery cohort was 53% male (n = 79) and had a median age of 67 (interquartile range, 58-74) years. The replication cohort was 50% male (n = 48) and had a median age of 68 (interquartile range, 60-75) years. Five predominant mutational subtypes were identified that clustered PDAC into 4 major subtypes: age related, double-strand break repair, mismatch repair, and 1 with unknown etiology (signature 8). These were replicated and validated. Signatures were faithfully propagated from primaries to matched metastases, implying their stability during carcinogenesis. Twelve of 27 (45%) double-strand break repair cases lacked germline or somatic events in canonical homologous recombination genes—BRCA1, BRCA2, or PALB2. Double-strand break repair and mismatch repair subtypes were associated with increased expression of antitumor immunity, including activation of CD8-positive T lymphocytes (GZMA and PRF1) and overexpression of regulatory molecules (cytotoxic T-lymphocyte antigen 4, programmed cell death 1, and indolamine 2,3-dioxygenase 1), corresponding to higher frequency of somatic mutations and tumor-specific neoantigens. Conclusions and Relevance Signature-based subtyping may guide personalized therapy of PDAC in the context of biomarker-driven prospective trials.
Cancer Letters | 2016
Alyssa L. Smith; Najmeh Alirezaie; Ashton A. Connor; Michelle Chan-Seng-Yue; Robert Grant; Iris Selander; Claire Bascuñana; Ayelet Borgida; Anita Hall; Thomas Whelan; Spring Holter; Treasa McPherson; Sean P. Cleary; Gloria M. Petersen; Atilla Omeroglu; Emmanouil Saloustros; John McPherson; Lincoln Stein; William D. Foulkes; Jacek Majewski; Steven Gallinger; George Zogopoulos
The genetic basis underlying the majority of hereditary pancreatic adenocarcinoma (PC) is unknown. Since DNA repair genes are widely implicated in gastrointestinal malignancies, including PC, we hypothesized that there are novel DNA repair PC susceptibility genes. As germline DNA repair gene mutations may lead to PC subtypes with selective therapeutic responses, we also hypothesized that there is an overall survival (OS) difference in mutation carriers versus non-carriers. We therefore interrogated the germline exomes of 109 high-risk PC cases for rare protein-truncating variants (PTVs) in 513 putative DNA repair genes. We identified PTVs in 41 novel genes among 36 kindred. Additional genetic evidence for causality was obtained for 17 genes, with FAN1, NEK1 and RHNO1 emerging as the strongest candidates. An OS difference was observed for carriers versus non-carriers of PTVs with early stage (≤IIB) disease. This adverse survival trend in carriers with early stage disease was also observed in an independent series of 130 PC cases. We identified candidate DNA repair PC susceptibility genes and suggest that carriers of a germline PTV in a DNA repair gene with early stage disease have worse survival.
Surgical Oncology Clinics of North America | 2015
Ashton A. Connor; Steven Gallinger
Despite decades of scientific and clinical research, pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy. The clinical and pathologic features of PDAC, specifically the known environmental and genetic risk factors, are reviewed here with special emphasis on the hereditary pancreatic cancer (HPC) syndromes. For these latter conditions, strategies are described for their identification, for primary and secondary prevention in unaffected carriers, and for disease management in affected carriers. Nascent steps have been made toward personalized medicine based on the rational use of screening, tumor subtyping, and targeted therapies; these have been guided by growing knowledge of HPC syndromes in PDAC.
Clinical Cancer Research | 2017
Kyaw Lwin Aung; Sandra Fischer; Robert E. Denroche; Gun-Ho Jang; Anna Dodd; Sean Creighton; Bernadette Southwood; Sheng-Ben Liang; Dianne Chadwick; Amy Zhang; Grainne M. O'Kane; Hamzeh Albaba; Shari Moura; Robert C. Grant; Jessica Miller; Faridah Mbabaali; Danielle Pasternack; Ilinca Lungu; John M. S. Bartlett; Sangeet Ghai; Mathieu Lemire; Spring Holter; Ashton A. Connor; Richard A. Moffitt; Jen Jen Yeh; Lee Timms; Paul M. Krzyzanowski; Neesha C. Dhani; David W. Hedley; Faiyaz Notta
Purpose: To perform real-time whole genome sequencing (WGS) and RNA sequencing (RNASeq) of advanced pancreatic ductal adenocarcinoma (PDAC) to identify predictive mutational and transcriptional features for better treatment selection. Experimental Design: Patients with advanced PDAC were prospectively recruited prior to first-line combination chemotherapy. Fresh tumor tissue was acquired by image-guided percutaneous core biopsy for WGS and RNASeq. Laser capture microdissection was performed for all cases. Primary endpoint was feasibility to report WGS results prior to first disease assessment CT scan at 8 weeks. The main secondary endpoint was discovery of patient subsets with predictive mutational and transcriptional signatures. Results: Sixty-three patients underwent a tumor biopsy between December 2015 and June 2017. WGS and RNASeq were successful in 62 (98%) and 60 (95%), respectively. Genomic results were reported at a median of 35 days (range, 19–52 days) from biopsy, meeting the primary feasibility endpoint. Objective responses to first-line chemotherapy were significantly better in patients with the classical PDAC RNA subtype compared with those with the basal-like subtype (P = 0.004). The best progression-free survival was observed in those with classical subtype treated with m-FOLFIRINOX. GATA6 expression in tumor measured by RNA in situ hybridization was found to be a robust surrogate biomarker for differentiating classical and basal-like PDAC subtypes. Potentially actionable genetic alterations were found in 30% of patients. Conclusions: Prospective genomic profiling of advanced PDAC is feasible, and our early data indicate that chemotherapy response differs among patients with different genomic/transcriptomic subtypes. Clin Cancer Res; 24(6); 1344–54. ©2017 AACR.
Expert Review of Gastroenterology & Hepatology | 2017
Ashton A. Connor; Steven Gallinger
ABSTRACT Introduction: Pancreatic ductal adenocarcinoma (PDAC) has the highest mortality rate of all epithelial malignancies and a paradoxically rising incidence rate. Clinical translation of next generation sequencing (NGS) of tumour and germline samples may ameliorate outcomes by identifying prognostic and predictive genomic and transcriptomic features in appreciable fractions of patients, facilitating enrolment in biomarker-matched trials. Areas covered: The literature on precision oncology is reviewed. It is found that outcomes may be improved across various malignancies, and it is suggested that current issues of adequate tissue acquisition, turnaround times, analytic expertise and clinical trial accessibility may lessen as experience accrues. Also reviewed are PDAC genomic and transcriptomic NGS studies, emphasizing discoveries of promising biomarkers, though these require validation, and the fraction of patients that will benefit from these outside of the research setting is currently unknown. Expert commentary: Clinical use of NGS with PDAC should be used in investigational contexts in centers with multidisciplinary expertise in cancer sequencing and pancreatic cancer management. Biomarker directed studies will improve our understanding of actionable genomic variation in PDAC, and improve outcomes for this challenging disease.
Cancer | 2016
Marina Wang; Saud H. Aldubayan; Ashton A. Connor; Beatrix Wong; Kate Mcnamara; Tahsin Khan; Kara Semotiuk; Sam Khalouei; Spring Holter; Melyssa Aronson; Zane Cohen; Steve Gallinger; George S. Charames; Aaron Pollett; Jordan Lerner-Ellis
In November 2001, genetic testing for Lynch syndrome (LS) was introduced by the Ministry of Health and Long‐Term Care (MOH) in Ontario for individuals at high risk for LS cancers according to either tumor immunohistochemistry staining or their family history. This article describes the outcomes of the program and makes recommendations for improving it and informing other public health care programs.
Familial Cancer | 2015
Ashton A. Connor; Hagit Katzov-Eckert; Thomas Whelan; Melyssa Aronson; Lynette Lau; Christian R. Marshall; George S. Charames; Aaron Pollett; Steven Gallinger; Jordan Lerner-Ellis
Abstract The identification of germline variants that predispose to cancer is important to further our understanding of tumorigenesis, guide patient management, prevent disease in unaffected relatives, and inform best practice for health care. We describe a kindred with multiple gastrointestinal malignancies where a novel MSH6 germline susceptibility variant was identified by exome sequencing after eluding serial routine testing in multiple affected members. This case fosters discussion of our current understanding of DNA mismatch repair deficiency, the management of Lynch Syndrome, and the emerging role of next generation sequencing in laboratory medicine to identify rare pathogenic germline variants in a comprehensive, unbiased fashion.