Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashutosh Verma is active.

Publication


Featured researches published by Ashutosh Verma.


Infection and Immunity | 2006

LfhA, a Novel Factor H-Binding Protein of Leptospira interrogans

Ashutosh Verma; Jens Hellwage; Sergey Artiushin; Peter F. Zipfel; Peter Kraiczy; John F. Timoney; Brian Stevenson

ABSTRACT The early phase of leptospiral infection is characterized by the presence of live organisms in the blood. Pathogenic Leptospira interrogans is resistant to the alternative pathway of complement mediated-killing, while nonpathogenic members of the genus are not. Consistent with that observation, only pathogenic leptospires bound factor H, a host fluid-phase regulator of the alternative complement pathway. Ligand affinity blot analyses revealed that pathogenic L. interrogans produces at least two factor H-binding proteins. Through screening of a lambda phage expression library, we identified one of these as the novel membrane protein LfhA. Ligand affinity assays and surface plasmon resonance analyses of recombinant LfhA revealed specific binding of both factor H and factor H-related protein 1. Serological examination of infected humans and horses demonstrated that LfhA is expressed by L. interrogans during mammalian infection. LfhA may therefore contribute to the resistance of pathogenic leptospires to complement-mediated killing during leptospiremic phases of the disease.


Infection and Immunity | 2010

Leptospiral Endostatin-Like Protein A Is a Bacterial Cell Surface Receptor for Human Plasminogen

Ashutosh Verma; Catherine A. Brissette; Amy Bowman; Samir T. Shah; Peter F. Zipfel; Brian Stevenson

ABSTRACT The spirochete Leptospira interrogans is a highly invasive pathogen of worldwide public health importance. Studies from our laboratories and another have demonstrated that L. interrogans can acquire host plasminogen on its surface. Exogenous plasminogen activators can then convert bound plasminogen into the functionally active protease plasmin. In this study, we extend upon those observations and report that leptospiral endostatin-like protein A (LenA) binds human plasminogen in a dose-dependent manner. LenA-plasminogen interactions were significantly inhibited by the lysine analog ξ-aminocaproic acid, suggesting that the lysine-binding sites on the amino-terminal kringle portion of the plasminogen molecule play a role in the binding. Previous studies have shown that LenA also binds complement regulator factor H and the extracellular matrix component laminin. Plasminogen competed with both factor H and laminin for binding to LenA, which suggests overlapping ligand-binding sites on the bacterial receptor. Finally, LenA-bound plasminogen could be converted to plasmin, which in turn degraded fibrinogen, suggesting that acquisition of host-derived plasmin by LenA may aid bacterial dissemination throughout host tissues.


Infection and Immunity | 2005

LruA and LruB, Novel Lipoproteins of Pathogenic Leptospira interrogans Associated with Equine Recurrent Uveitis

Ashutosh Verma; Sergey Artiushin; James Matsunaga; David A. Haake; John F. Timoney

ABSTRACT Recurrent uveitis as a sequela to Leptospira infection is the most common infectious cause of blindness and impaired vision of horses worldwide. Leptospiral proteins expressed during prolonged survival in the eyes of horses with lesions of chronic uveitis were identified by screening a phage library of Leptospira interrogans DNA fragments with eye fluids from uveitic horses. Inserts of reactive phages encoded several known leptospiral proteins and two novel putative lipoproteins, LruA and LruB. LruA was intrinsically labeled during incubation of L. interrogans in medium containing [14C]palmitic acid, confirming that it is a lipoprotein. lruA and lruB were detected by Southern blotting in infectious Leptospira interrogans but not in nonpathogenic Leptospira biflexa. Fractionation data from cultured Leptospira indicate that LruA and LruB are localized in the inner membrane. Uveitic eye fluids contained significantly higher levels of immunoglobulin A (IgA) and IgG specific for each protein than did companion sera, indicating strong local antibody responses. Moreover, LruA- and LruB-specific antisera reacted with equine ocular components, suggesting an immunopathogenic role in leptospiral uveitis.


Infection and Immunity | 2009

Borrelia burgdorferi BmpA Is a Laminin-Binding Protein

Ashutosh Verma; Catherine A. Brissette; Amy Bowman; Brian Stevenson

ABSTRACT The Borrelia burgdorferi BmpA outer surface protein plays a significant role in mammalian infection by the Lyme disease spirochete and is an important antigen for the serodiagnosis of human infection. B. burgdorferi adheres to host extracellular matrix components, including laminin. The results of our studies indicate that BmpA and its three paralogous proteins, BmpB, BmpC, and BmpD, all bind to mammalian laminin. BmpA did not bind mammalian type I or type IV collagens or fibronectin. BmpA-directed antibodies significantly inhibited the adherence of live B. burgdorferi to laminin. The laminin-binding domain of BmpA was mapped to the carboxy-terminal 80 amino acids. Solubilized collagen inhibited BmpA-laminin binding, suggesting interactions through the collagen-binding domains of laminin. These results, together with previous data, indicate that BmpA and its paralogs are targets for the development of preventative and curative therapies for Lyme disease.


Infection and Immunity | 2004

Host-Inducible Immunogenic Sphingomyelinase-Like Protein, Lk73.5, of Leptospira interrogans

Sergey Artiushin; John F. Timoney; Jarlath E. Nally; Ashutosh Verma

ABSTRACT Leptospira interrogans causes a variety of clinical syndromes in animals and humans. Although much information has accumulated on the importance of leptospiral lipopolysaccharide in protective antibody responses, relatively little is known about proteins that participate in immune responses. Identification of those proteins induced only in the host is particularly difficult. Using a novel double-antibody screen designed to identify clones in a gene library of L. interrogans serovar Pomona expressing host-inducible proteins, we have characterized a gene (lk75.3) encoding a sphingomyelinase-like preprotein of 648 amino acids with cytotoxic activity for equine pulmonary endothelial cells and weak hemolytic activity for equine and rabbit erythrocytes. lk73.5 was found as a single gene copy in all serovars of L. interrogans but not in other Leptospira spp. except L. inadai. The open reading frame (ORF) for Lk73.5 is followed by another partially homologous sequence containing an ORF (sph-like 2) for a 28.7-kDa peptide. Lk73.5 and Sph-like 2 share 95.1 and 97.7% amino acid identity with putative sphingomyelinases Sph2 and Sph1 (N terminus) from L. interrogans serovar Lai (S.-X. Ren, G. Fu, X.-G. Jiangk, R. Zeng, Y.-G. Miao, H. Xu, Y.-X. Zhang, H. Xiong, G. Lu, L.-F. Lu, H.-Q. Jiang, J. Jia, Y.-F. Tu, J.-X. Jiang, W.-Y. Gu, Y.-Q. Zhang, Z. Cai, H.-H. Sheng, H.-F. Yin, Y. Zhang, G.-F. Zhu, M. Wank, H.-L. Huangk, Z. Qian, S.-Y. Wang, Wei Ma, Z.-J. Yao, Y. Shen, B.-Q. Qiang, Q.-C. Xia, X.-K. Guo, A. Danchinq, I. S. Girons, R. L. Somerville, Y.-M. Wen, M.-H. Shik, Z. Chen, J.-G. Xuk, and G.-P. Zhao, Nature 422:88-893, 2003). Substantial homologies to sphingomyelinases from other leptospiras and other bacteria are also present. Lk73.5 was not detected in leptospiras cultured at 30 or 37°C. The recombinant protein reacted strongly with sera from recently infected mares but not with sera from horses vaccinated with commercial pentavalent bacterin. The host-inducible immunogenic Lk73.5 should have value in distinguishing vaccine from infection immune response.


Veterinary Microbiology | 2013

Leptospirosis in horses.

Ashutosh Verma; Brian Stevenson; Ben Adler

Leptospirosis in horses has been considered a relatively uncommon infection. However, recent data suggest that the infection is widespread, with the incidence and infecting serovars varying considerably in different geographical regions. The majority of infections remain asymptomatic. Clinical signs in equine leptospirosis resemble those seen in other animal species. However, leptospirosis as a cause of acute respiratory distress is becoming more frequently recognised. A particular feature of equine leptospirosis is post infection recurrent uveitis (moon blindness or periodic ophthalmia), which appears to be mediated by autoimmune mechanisms involving cross reactivity between ocular tissues and leptospiral membrane proteins. There are no leptospiral vaccines licensed for use in horses, with no prospect for any becoming available in the foreseeable future. Accordingly, prevention of equine leptospirosis must rely on good hygiene practices, minimisation of rodent contact, and vaccination of other species of production and companion animals.


International Journal of Medical Microbiology | 2008

Lyme borreliosis spirochete Erp proteins, their known host ligands, and potential roles in mammalian infection.

Catherine A. Brissette; Anne E. Cooley; Logan H. Burns; Sean P. Riley; Ashutosh Verma; Michael E. Woodman; Tomasz Bykowski; Brian Stevenson

Lyme borreliae naturally maintain numerous distinct DNA elements of the cp32 family, each of which carries a mono- or bicistronic erp locus. The encoded Erp proteins are surface-exposed outer membrane lipoproteins that are produced at high levels during mammalian infection but largely repressed during colonization of vector ticks. Recent studies have revealed that some Erp proteins can serve as bacterial adhesins, binding host proteins such as the complement regulator factor H and the extracellular matrix component laminin. These results suggest that Erp proteins play roles in multiple aspects of mammalian infection.


Clinical and Vaccine Immunology | 2008

LruA and LruB Antibodies in Sera of Humans with Leptospiral Uveitis

Ashutosh Verma; Sivakumar R. Rathinam; C. Gowri Priya; Veerappan Muthukkaruppan; Brian Stevenson; John F. Timoney

ABSTRACT Uveitis can be a serious complication of leptospirosis. Previous studies indicated that the leptospiral lipoproteins LruA and LruB are expressed in the eyes of uveitic horses and that antibodies directed against those proteins show in vitro cross-reactivity with components of equine lens, ciliary body, and/or retina. We now demonstrate that sera from a significant proportion of humans who have leptospiral uveitis also contain antibodies against LruA and LruB. Different categories of nonleptospiral uveitis and autoimmune uveitis were also screened; patients diagnosed with Fuchs uveitis or Behçets syndrome produced antibodies that cross-reacted with LruA and LruB, suggesting similarities of the autoimmune responses in those diseases with those of leptospiral uveitis.


PLOS Neglected Tropical Diseases | 2010

Cross-Reactivity of Antibodies against Leptospiral Recurrent Uveitis-Associated Proteins A and B (LruA and LruB) with Eye Proteins

Ashutosh Verma; Pawan Kumar; Kelly Babb; John F. Timoney; Brian Stevenson

Infection by Leptospira interrogans has been causally associated with human and equine uveitis. Studies in our laboratories have demonstrated that leptospiral lipoprotein LruA and LruB are expressed in the eyes of uveitic horses, and that antibodies directed against LruA and LruB react with equine lenticular and retinal extracts, respectively. These reactivities were investigated further by performing immunofluorescent assays on lenticular and retinal tissue sections. Incubation of lens tissue sections with LruA-antiserum and retinal sections with LruB-antiserum resulted in positive fluorescence. By employing two-dimensional gel analyses followed by immunoblotting and mass spectrometry, lens proteins cross-reacting with LruA antiserum were identified to be α-crystallin B and vimentin. Similarly, mass spectrometric analyses identified β-crystallin B2 as the retinal protein cross-reacting with LruB-antiserum. Purified recombinant human α-crystallin B and vimentin were recognized by LruA-directed antiserum, but not by control pre-immune serum. Recombinant β-crystallin B2 was likewise recognized by LruB-directed antiserum, but not by pre-immune serum. Moreover, uveitic eye fluids contained significantly higher levels of antiibodies that recognized α-crystallin B, β-crystallin B2 and vimentin than did normal eye fluids. Our results indicate that LruA and LruB share immuno-relevant epitopes with eye proteins, suggesting that cross-reactive antibody interactions with eye antigens may contribute to immunopathogenesis of Leptospira-associated recurrent uveitis.


Journal of Bacteriology | 2012

EbfC (YbaB) Is a New Type of Bacterial Nucleoid-Associated Protein and a Global Regulator of Gene Expression in the Lyme Disease Spirochete

Brandon L. Jutras; Amy Bowman; Catherine A. Brissette; Claire A. Adams; Ashutosh Verma; Alicia M. Chenail; Brian Stevenson

Nearly every known species of Eubacteria encodes a homolog of the Borrelia burgdorferi EbfC DNA-binding protein. We now demonstrate that fluorescently tagged EbfC associates with B. burgdorferi nucleoids in vivo and that chromatin immunoprecipitation (ChIP) of wild-type EbfC showed it to bind in vivo to sites throughout the genome, two hallmarks of nucleoid-associated proteins. Comparative RNA sequencing (RNA-Seq) of a mutant B. burgdorferi strain that overexpresses EbfC indicated that approximately 4.5% of borrelial genes are significantly impacted by EbfC. The ebfC gene was highly expressed in rapidly growing bacteria, but ebfC mRNA was undetectable in stationary phase. Combined with previous data showing that EbfC induces bends in DNA, these results demonstrate that EbfC is a nucleoid-associated protein and lead to the hypothesis that B. burgdorferi utilizes cellular fluctuations in EbfC levels to globally control transcription of numerous genes. The ubiquity of EbfC proteins in Eubacteria suggests that these results apply to a wide range of pathogens and other bacteria.

Collaboration


Dive into the Ashutosh Verma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Bowman

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda D. Loftis

Ross University School of Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge