Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashwani Mathur is active.

Publication


Featured researches published by Ashwani Mathur.


Carbohydrate Polymers | 2013

Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623.

Manmeet Singh Dayal; Navendu Goswami; Anshuman Sahai; Vibhor Jain; Garima Mathur; Ashwani Mathur

Acetobacter aceti MTCC 2623 was studied as an alternative microbial source for bacterial cellulose (BC) production. Effect of media components on cell growth rate, BC production and cellulose characteristics were studied. FTIR results showed significant variations in cellulose characteristics produced by A. aceti in different media. Results have shown the role of fermentation time on crystallinity ratio of BC in different media. Further, effect of six different media components on cell growth and BC production was studied using fractional factorial design. Citric acid was found to be the most significant media component for cell growth rate (95% confidence level, R(2)=0.95). However, direct role of these parameters on cellulose production was not established (p-value>0.05).


Bioremediation Journal | 2011

Colonization and Degradation of Thermally Oxidized High-Density Polyethylene by Aspergillus niger (ITCC No. 6052) Isolated from Plastic Waste Dumpsite

Garima Mathur; Ashwani Mathur; Ramasare Prasad

ABSTRACT Plastic materials, particularly polyethylene, are the potential source of environmental pollution. In the present study, a fungal strain was isolated from plastic waste dumpsites capable of adhering to high-density polyethylene (HDPE) surface. The fungal strain was identified as Aspergillus niger (ITCC no. 6052). A visible increase in the growth of the fungi was observed on the surface of the polyethylene when cultured in minimal medium at 30°C and 120 rpm, for 1 month. Approximately 3.44% reduction (gravimetrically) in mass and 61% reduction in tensile strength of polyethylene was observed after 1 month of incubation with fungal isolate. Scanning electron microscope analysis showed hyphael penetration and cracks on the surface of polyethylene. A thick network of fungal hyphae forming a biofilm was also observed on the surface of the plastic pieces. The efficient biofilm formation on polyethylene surface by Aspergillus niger (ITCC no. 6052) is attributed to its high cell surface hydrophobicity. This study indicated that Aspergillus niger (ITCC no. 6052) has ability to degrade thermally oxidized polyethylene.


Carbohydrate Polymers | 2016

Evaluation of physicochemical and biological properties of chitosan/poly (vinyl alcohol) polymer blend membranes and their correlation for Vero cell growth

Parul Sharma; Garima Mathur; Sanjay R. Dhakate; Subhash Chand; Navendu Goswami; Sanjeev Sharma; Ashwani Mathur

The blend membranes with varying weight ratios of chitosan/poly (vinyl alcohol) (CS/PVA) (1:0, 1:1, 1:2.5, 1.5:1, 1.5: 2.5) were prepared using solvent casting method and were evaluated for their potential application in single-use membrane bioreactors (MBRs). The physicochemical properties of the prepared membranes were investigated for chemical interactions (FTIR), surface morphology (SEM), water uptake, protein sorption (qe), ammonia sorption and growth kinetics of Vero cells. CS/PVA blend membrane having weight ratio of 1.5:1 had shown enhanced membrane flexibility, reduced water uptake, less protein sorption and no ammonium sorption compared to CS membrane. This blend membrane also showed comparatively enhanced higher specific growth rate (0.82/day) of Vero cells. Improved physicochemical properties and growth kinetics obtrude CS/PVA (1.5:1) as a potential surface for adhesion and proliferation with possible application in single use membrane bioreactors. Additionally, new insight explaining correlation between water holding (%) of CS/PVA (1.5:1) blend membrane and doubling time (td) of Vero cells is proposed.


E-polymers | 2015

Evaluating the potential of chitosan/poly(vinyl alcohol) membranes as alternative carrier material for proliferation of Vero cells

Parul Sharma; Garima Mathur; Navendu Goswami; Sanjeev Sharma; Sanjay R. Dhakate; Subhash Chand; Ashwani Mathur

Abstract Chitosan/poly(vinyl alcohol) (CS/PVA) blend membranes were prepared using the casting method and their physiochemical properties were analyzed using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). FTIR and XRD demonstrated possible hydrogen bonds between CS and PVA. The addition of PVA to CS resulted in surface roughness as analyzed by SEM. The CS/PVA blend membrane exhibited high tensile properties (81.62%) and reduced water-holding capacity (53.8%) compared to a pure CS membrane (control). Cell viability and proliferation were assessed via an MTT assay with Vero cell culture. Associated with improved physicochemical properties, the CS/PVA blend membrane promotes cell proliferation of Vero cells with high specific growth rate (0.582 day-1). The results demonstrate that the blending of CS and PVA could significantly alter the surface rugosity, water-holding capacity and improve the mechanical and biological properties of the membrane. Interestingly, this concept can be extended for different anchorage-dependent cell lines, as an alternative carrier material.


International Journal of Peptide Research and Therapeutics | 2014

Enhanced Interaction of Shuffled Mutacin IV, an Antimicrobial Peptide of Bacterial Origin, with Surface Protein IsdB of Staphylococcus aureus

Chakresh Kumar Jain; Raman Sethi; Vanashika Sharma; Ashwani Mathur; Sanjeev Sharma

Antimicrobial peptides are produced by prokaryotes and eukaryotes with fundamental role of protection against pathogenic microbes. Staphylococcus aureus, a major virulent pathogen in humans, shows multiple drug resistance and is affected by the bacteriocin activity of Mutacin IV. Currently, peptide therapeutics has been reported as a potential alternative for treating microbial infections specially exhibiting multiple drug resistance. However, the mechanism of action and interaction of peptides with target proteins is not known. The current work is an attempt to address the above issue by performing molecular docking and randomization experiments. In this study, antimicrobial peptides of bacterial origin (168 peptides) were collected from APD2 database and their net charge and hydrophobicity values were retrieved. Mutacin IV (APD Id—AP01174), a 44 amino acids long peptide derived from Streptococcus mutans UA140, was selected on the basis of high hydrophobicity to net charge ratio (0.52) and used for in silico docking studies with therapeutically important surface proteins viz. IsdA, IsdB, ClfB, and SasG of S. aureus using ZDOCK server. The docking result of IsdB surface protein and Mutacin IV was found better (ZDOCK score 1168.582) as compared to others. Afterwards, the native Mutacin IV sequence was randomized to generate 50 new combinations using EMBOSS (Shuffleseq) tool. The new sequence of Mutacin IV was screened on the basis of high in vivo to in vitro aggregation ratio (i.e. high in vivo aggregation and low in vitro aggregation values) and good binding energies against IsdB surface protein of S. aureus from the randomized sequences. The new peptide sequence showed an in vivo to in vitro aggregation ratio of 2.206 and 0.888, respectively which is higher than native sequence of Mutacin IV ratio (0.205). Moreover, the ZDOCK scores were found to be 1370.529 and 1687.048 which were better than the native sequence of Mutacin IV (ZDOCK score 1168.582). This research work identifies the new sequence of Mutacin IV peptide which binds effectively to the surface proteins of S. aureus and thereby could be a better peptide than native Mutacin IV. Our finding also demonstrates enhanced interactions of new Mutacin IV peptide with IsdB surface protein to understand the structural implications and proposes its effective antimicrobial role against S. aureus.


Biologia | 2013

Molecular docking studies of bacoside from Bacopa monnieri with LRRK2 receptor

Chakresh Kumar Jain; Aman Gupta; Ashish Kumar Tewari; Vanashika Sharma; Vipul Surender Kumar; Ashwani Mathur; Sanjeev Sharma

Bacosides, constituents of Bacopa monnieri (Linn.), are reported to be potential therapeutic saponins in the cure of Parkinson’s disease (PD). However, detailed mechanism for control of PD by bacosides is not well documented. PD has been reported to be caused by genetic mutations in leucine-rich repeat kinase 2 (LRRK2) leading to higher kinase activity that has been identified as a major cause of familial PD. The LRRK2 was thus proposed as an important marker in the pathogenesis of PD. This suggests that inhibition of LRRK2 holds promise as a potential treatment for PD. Our study focuses on the possible application of bacoside A constituents as potential inhibitors of LRRK2. In this work, we have carried out the in silico molecular docking studies of bacoside A constituents with LRRK2, proposing their role as an inhibitor in PD. The study has revealed the significant interactions between bacosaponin and LRRK2 having ten H-bonds at receptor-ligand site with binding affinity −7.5 kcal/mol. Hence, amongst the studied triglycosidic saponins, bacosaponin was analyzed to be a better ligand, proposing it to be a major constituent in inhibiting enzymatic activities of mutated LRRK2.


Plant Physiology and Biochemistry | 2018

Zinc oxide nanoparticles (ZnO NP) mediated regulation of bacosides biosynthesis and transcriptional correlation of HMG-CoA reductase gene in suspension culture of Bacopa monnieri

Pragya Bhardwaj; Navendu Goswami; Pankhuri Narula; Chakresh Kumar Jain; Ashwani Mathur

Bacopa monnieri (L.) Wettst. is a well documented nootropic plant, extensive known for alleviating symptoms of neurological disorder, along with other symptomatic relief. This property is attributed to the active phytocompounds, saponins (bacoside A) present in the plant. However, lack of stringent validation guidelines in most of the countries bring to the market, formulations differing in phytocompounds yield, thereby suggesting possible variation in therapeutic efficacy. The in-vitro suspension cultures of the Bacopa monnieri, provide an ease of scale-up, but regulating saponin yield is a stringent task. The aim of the study is to explore the effects of different concentrations (0, 0.25, 0.50, 0.75 and 1.0 ppm) of zinc oxide nanoparticles (ZnO NP) (24 nm in size), in regulating growth rate, bacoside yield and transcriptional profile of HMG CoA reductasegene in the suspension cells of Bacopa monnieri. Results showed a linear correlation between Bacoside A yield and ZnO NP concentrations with around 2 fold increase in total bacoside A concentration at 1 ppm. Also, ZnO NP supplemented suspension cells showed variation in the specific growth rate. Neuroprotective properties, analyzed using methanolic extracts of suspension cells again obtrude the extract of ZnO NP supplemented (0.75 ppm and 1 ppm) culture for better response in alleviating oxidative stress mediated damage to neuronal cells. ZnO NP supplemented system showed lower expression of HMG CoA reductasegene (the rate limiting step in bacoside A biosynthesis) but higher concentration of bacoside A, suggesting possible role of ZnO NP in isoprenoid pathway than MVA pathways.


Journal of Pharmacy and Pharmacology | 2018

Comparative evaluation of four triterpenoid glycoside saponins of bacoside A in alleviating sub-cellular oxidative stress of N2a neuroblastoma cells

Pragya Bhardwaj; Chakresh Kumar Jain; Ashwani Mathur

To examine the neuroprotective property of triterpenoid glycoside saponins of Bacopa monnieri (L.) Wettst. bacoside A and its components against H2O2‐induced oxidative stress on neuronal (N2a) cells.


E-polymers | 2016

Effect of carbon sources on physicochemical properties of bacterial cellulose produced from Gluconacetobacter xylinus MTCC 7795

Rushali Singh; Ashwani Mathur; Navendu Goswami; Garima Mathur

Abstract In this study, the effect of modified Hestrin Schramm (HS) medium supplemented with different carbon sources viz., glucose, fructose, galactose and lactic acid on the yield and physicochemical properties of bacterial cellulose (BC) produced from Gluconacetobacter xylinus strain MTCC 7795 in shake flask culture conditions was investigated. Growth studies indicated that all carbon sources supported the growth of bacteria, though specific growth rate and doubling time differs. Fructose gave the highest cellulose yield of 7.72 mg/ml after 130 h of fermentation, while yield in glucose and galactose supplemented medium were 4.49 mg/ml and 3.38 mg/ml, respectively. X-ray powder diffraction (XRD) analysis revealed that all BC samples were amorphous in comparison to commercial cellulose. Fourier transform infrared (FTIR) spectroscopic investigations of bacterial cellulose (BC) samples affirm the purity of the cellulose produced. No significant variations in physicochemical properties of cellulose samples produced with different carbon sources were observed. This study for the first time has investigated the effect of carbon sources on physicochemical properties of bacterial cellulose produced by G. xylinus MTCC 7795 and provides a strategy for economical production of BC with anticipated application in therapeutics and tissue engineering.


Bioinformation | 2013

Comparative Molecular docking analysis of DNA Gyrase subunit A in Pseudomonas aeruginosaPAO1

Aman Gupta; Vanashika Sharma; Ashish Kumar Tewari; Vipul SurenderKumar; Gulshan Wadhwa; Ashwani Mathur; Sanjeev Sharma; Chakresh Kumar Jain

Pseudomonas aeruginosa is an opportunistic bacterium known for causing chronic infections in cystic fibrosis and chronic obstructive pulmonary disease (COPD) patients. Recently, several drug targets in Pseudomonas aeruginosa PAO1 have been reported using network biology approaches on the basis of essentiality and topology and further ranked on network measures viz. degree and centrality. Till date no drug/ligand molecule has been reported against this targets.In our work we have identified the ligand /drug molecules, through Orthologous gene mapping against Bacillus subtilis subsp. subtilis str. 168 and performed modelling and docking analysis. From the predicted drug targets in PA PAO1, we selected those drug targets which show statistically significant orthology with a model organism and whose orthologs are present in all the selected drug targets of PA PAO1.Modeling of their structure has been done using I-Tasser web server. Orthologous gene mapping has been performed using Cluster of Orthologs (COGs) and based on orthology; drugs available for Bacillus sp. have been docked with PA PAO1 protein drug targets using MoleGro virtual docker version 4.0.2.Orthologous gene for PA3168 gyrA is BS gyrAfound in Bacillus subtilis subsp. subtilis str. 168. The drugs cited for Bacillus sp. have been docked with PA genes and energy analyses have been made. Based on Orthologous gene mapping andin-silico studies, Nalidixic acid is reported as an effective drug against PA3168 gyrA for the treatment of CF and COPD.

Collaboration


Dive into the Ashwani Mathur's collaboration.

Top Co-Authors

Avatar

Garima Mathur

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Navendu Goswami

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Chakresh Kumar Jain

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Sanjeev Sharma

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Parul Sharma

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Vanashika Sharma

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Aman Gupta

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Anshuman Sahai

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Ashish Kumar Tewari

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Pragya Bhardwaj

Jaypee Institute of Information Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge