Ashwath Jayagopal
Hoffmann-La Roche
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ashwath Jayagopal.
Journal of the American Chemical Society | 2010
Ashwath Jayagopal; Kristin C. Halfpenny; Jonas W. Perez; David W. Wright
A strategy is presented for the live cell imaging of messenger RNA using hairpin DNA-functionalized gold nanoparticles (hAuNP). hAuNP improve upon technologies for studying RNA trafficking by their efficient internalization within live cells without transfection reagents, improved resistance to DNase degradation, low cytotoxicity, and the incorporation of hairpin DNA molecular beacons to confer high specificity and sensitivity to the target mRNA sequence. Furthermore, the targeted nanoparticle-beacon construct, once bound to the target mRNA sequence, remains hybridized to the target, enabling spatial and temporal studies of RNA trafficking and downstream analysis. Targeted hAuNP exhibited high specificity for glyceraldehyde 3-phosphate dehydrogenase (GADPH) mRNA in live normal HEp-2 cells and respiratory syncytial virus (RSV) mRNA in live RSV-infected HEp-2 cells with high target to background ratios. Multiplexed fluorescence imaging of distinct mRNAs in live cells and simultaneous imaging of mRNAs with immunofluorescently stained protein targets in fixed cells was enabled by appropriate selection of molecular beacon fluorophores. Pharmacologic analysis suggested that hAuNP were internalized within cells via membrane-nanoparticle interactions. hAuNP are a promising approach for the real-time analysis of mRNA transport and processing in live cells for elucidation of biological processes and disease pathogenesis.
Journal of Clinical Investigation | 2011
Christopher S. Williams; Baolin Zhang; J. Joshua Smith; Ashwath Jayagopal; Caitlyn W. Barrett; Christopher J. Pino; Patricia K. Russ; S.-H. Presley; DunFa Peng; Daniel O. Rosenblatt; Frederick R. Haselton; Jin-Long Yang; M. Kay Washington; Xi Chen; Steven Eschrich; Timothy J. Yeatman; Wael El-Rifai; R. Daniel Beauchamp; Min S. Chang
The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis.
Nanotechnology | 2009
Ashwath Jayagopal; Yan Ru Su; John L. Blakemore; MacRae F. Linton; Sergio Fazio; Frederick R. Haselton
The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes. QD-maurocalcine bioconjugates labeled both cell types with a high efficiency, preserved cell viability, and did not perturb native leukocyte function in cytokine release and endothelial adhesion assays. QD-labeled monocyte/macrophages and T lymphocytes were reinfused in an ApoE(-/-) mouse model of atherosclerosis and age-matched controls and tracked for up to four weeks to investigate the incorporation of cells within aortic lesion areas, as determined by oil red O (ORO) and immunofluorescence ex vivo staining. QD-labeled cells were visible in atherosclerotic plaques within two days of injection, and the two cell types colocalized within areas of subsequent ORO staining. Our method for tracking leukocytes in lesions enables high signal-to-noise ratio imaging of multiple cell types and biomarkers simultaneously within the same specimen. It also has great utility in studies aimed at investigating the role of distinct circulating leukocyte subsets in plaque development and progression.
Molecular Therapy | 2014
Qinbo Zhou; Chastain Anderson; Hongmei Zhang; Xinyu Li; Fiona M. Inglis; Ashwath Jayagopal; Shusheng Wang
Actin cytoskeleton is critical for cell motility and division, both of which are important for angiogenesis. MicroRNAs (miRNA/miR) are emerging as pivotal modulators of vascular development and disease. How miRNAs regulate actin cytoskeleton dynamics in endothelial cells (EC) and neovascularization is still unclear. Here, we report that miR-24 regulates actin dynamics in ECs through targeting multiple members downstream of Rho signaling, including Pak4, Limk2, and Diaph1 proteins. Overexpression of miR-24 in ECs blocks stress fiber and lamellipodia formation, represses EC migration, proliferation, and tube formation in vitro, as well as angiogenesis in an ex vivo aortic ring assay. Moreover, subretinal delivery of miR-24 mimics represses laser-induced choroidal neovascularization (CNV) in vivo. Mechanistically, knockdown of miR-24 target protein LIMK2 or PAK4 inhibits stress fiber formation and tube formation in vitro, mimicking miR-24 overexpression phenotype in angiogenesis, while overexpression of LIMK2 and PAK4 by adenoviruses partially rescued the tube formation defects in miR-24 overexpressing ECs. Taken together, these findings suggest that miR-24 represses angiogenesis by simultaneously regulating multiple components in the actin cytoskeleton pathways. Manipulation of actin cytoskeleton pathways by miR-24 may represent an attractive therapeutic solution for the treatment of wet age-related macular degeneration (AMD) and other vascular diseases.
ACS Medicinal Chemistry Letters | 2015
Md. Imam Uddin; Stephanie M. Evans; Jason R. Craft; Lawrence J. Marnett; Md. Jashim Uddin; Ashwath Jayagopal
We report the design and synthesis of an activatable molecular imaging probe to detect hypoxia in mouse models of retinal vascular diseases. Hypoxia of the retina has been associated with the initiation and progression of blinding retinal vascular diseases including age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity. In vivo retinal imaging of hypoxia may be useful for early detection and timely treatment of retinal diseases. To achieve this goal, we synthesized HYPOX-3, a near-infrared (NIR) imaging agent coupled to a dark quencher, Black Hole Quencher 3 (BHQ3), which has been previously reported to contain a hypoxia-sensitive cleavable azo-bond. HYPOX-3 was cleaved in hypoxic retinal cell culture and animal models, enabling detection of hypoxia with high signal-to-noise ratios without acute toxicity. HYPOX-3 fluorescences in hypoxic cells and tissues and was undetectable under normoxia. These imaging agents are promising candidates for imaging retinal hypoxia in preclinical disease models and patients.
Current Atherosclerosis Reports | 2010
Ashwath Jayagopal; MacRae F. Linton; Sergio Fazio; Frederick R. Haselton
A developing forefront in vascular disease research is the application of nanotechnology, the engineering of devices at the molecular scale, for diagnostic and therapeutic applications in atherosclerosis. Promising research in this field over the past decade has resulted in the preclinical validation of nanoscale devices that target cellular and molecular components of the atherosclerotic plaque, including one of its prominent cell types, the macrophage. Nanoscale contrast agents targeting constituents of plaque biology have been adapted for application in multiple imaging modalities, leading toward more detailed diagnostic readouts, whereas nanoscale drug delivery devices can be tailored for site-specific therapeutic activity. This review highlights recent progress in utilizing nanotechnology for the clinical management of atherosclerosis, drawing upon recent preclinical studies relevant to diagnosis and treatment of the plaque and promising future applications.
IEEE Transactions on Nanobioscience | 2008
Ashwath Jayagopal; Eric M. Sussman; Venkatram Prasad Shastri
The objectives of this study were to synthesize and characterize functionalized solid lipid nanoparticles (fSLN) to investigate their interaction with endothelial cell monolayers and to evaluate their transendothelial transport capabilities. fSLN bearing tetramethylrhodamine-isothiocyanate-labeled bovine serum albumin (TRITC-BSA) and Coumarin 6 were prepared using a single-step phase-inversion process that afforded concurrent surface modification with a variety of macromolecules such as polystyrene sulfonate (PSS), poly-L-lysine (PLL), heparin (Hep), polyacrylic acid (PAA), polyvinyl alcohol, and polyethylene glygol (PEG). TRITC-BSA/Coumarin 6 encapsulated in fSLN with composite surface functionality (PSS-PLL and PSS-PLL-Hep) were also investigated. Size and surface charge of fSLN were analyzed using dynamic light scattering and transmission electron microscopy. Transport across bovine aortic endothelial cell (BAEC) monolayers was assessed spectrophotometrically using a transwell assay, and fSLN localization at the level of the cell and permeable support was analyzed using fluorescence microscopy. fSLN with tunable size and surface functionality were successfully produced, and had significant effects on cell localization and transport. Specifically, fSLN with PSS-PLL-Hep composite surface functionalization was capable of translocating 53.2 plusmn 8.7 mug of TRITC-BSA within 4 h, with fSLN-PEG, fSLN-PAA, and fSLN-PSS exhibiting near-complete apical, paracellular, and cytosolic localization, respectively. Coumarin 6 was released by fSLN as indicated by dye labeling of BAEC membranes. We have developed a rapid process for the production of fSLN bearing low- and high-molecular-weight payloads of varying physicochemical properties. These findings have implications for drug delivery and bioimaging applications, since due to tunable surface chemistry, fSLN internalization and/or translocation across intact endothelial cell monolayers is possible.
Bioconjugate Chemistry | 2014
Stephanie M. Evans; Kwangho Kim; Chauca E. Moore; Md. Imam Uddin; Megan E. Capozzi; Jason R. Craft; Gary A. Sulikowski; Ashwath Jayagopal
Hypoxia has been associated with retinal diseases which lead the causes of irreversible vision loss, including diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration. Therefore, technologies for imaging hypoxia in the retina are needed for early disease detection, monitoring of disease progression, and assessment of therapeutic responses in the patient. Toward this goal, we developed two hypoxia-sensitive imaging agents based on nitroimidazoles which are capable of accumulating in hypoxic cells in vivo. 2-nitroimidazole or Pimonidazole was conjugated to fluorescent dyes to yield the imaging agents HYPOX-1 and HYPOX-2. Imaging agents were characterized in cell culture and animal models of retinal vascular diseases which exhibit hypoxia. Both HYPOX-1 and -2 were capable of detecting hypoxia in cell culture models with >10:1 signal-to-noise ratios without acute toxicity. Furthermore, intraocular administration of contrast agents in mouse models of retinal hypoxia enabled ex vivo detection of hypoxic tissue. These imaging agents are a promising step toward translation of hypoxia-sensitive molecular imaging agents in preclinical animal models and patients.
Investigative Ophthalmology & Visual Science | 2011
Ashwath Jayagopal; Jin-Long Yang; Frederick R. Haselton; Min S. Chang
PURPOSE To investigate the role of tight junction (TJ)-associated signaling pathways in the proliferation of uveal melanoma. METHODS Human uveal melanoma cell lines overexpressing the TJ molecule blood vessel epicardial substance (Bves) were generated. The effects of Bves overexpression on TJ protein expression, cell proliferation, and cell cycle distribution were quantified. In addition, localization and transcription activity of the TJ-associated protein ZO-1-associated nucleic acid binding protein (ZONAB) were evaluated using immunofluorescence and bioluminescence reporter assays to study the involvement of Bves signaling in cell proliferation-associated pathways. RESULTS Bves overexpression in uveal melanoma cell lines resulted in increased expression of the TJ proteins occludin and ZO-1, reduced cell proliferation, and increased sequestration of ZONAB at TJs and reduced ZONAB transcriptional activity. CONCLUSIONS TJ proteins are present in uveal melanoma, and TJ-associated signaling pathways modulate cell signaling pathways relevant to proliferation in uveal melanoma.
Biochemical and Biophysical Research Communications | 2014
James M. May; Ashwath Jayagopal; Zhi-chao Qu; William H. Parker
High glucose concentrations due to diabetes increase apoptosis of vascular pericytes, impairing vascular regulation and weakening vessels, especially in brain and retina. We sought to determine whether vitamin C, or ascorbic acid, could prevent such high glucose-induced increases in pericyte apoptosis. Culture of human microvascular brain pericytes at 25 mM compared to 5mM glucose increased apoptosis measured as the appearance of cleaved caspase 3. Loading the cells with ascorbate during culture decreased apoptosis, both at 5 and 25 mM glucose. High glucose-induced apoptosis was due largely to activation of the receptor for advanced glycation end products (RAGE), since it was prevented by specific RAGE inhibition. Culture of pericytes for 24h with RAGE agonists also increased apoptosis, which was completely prevented by inclusion of 100 μM ascorbate. Ascorbate also prevented RAGE agonist-induced apoptosis measured as annexin V binding in human retinal pericytes, a cell type with relevance to diabetic retinopathy. RAGE agonists decreased intracellular ascorbate and GSH in brain pericytes. Despite this evidence of increased oxidative stress, ascorbate prevention of RAGE-induced apoptosis was not mimicked by several antioxidants. These results show that ascorbate prevents pericyte apoptosis due RAGE activation. Although RAGE activation decreases intracellular ascorbate and GSH, the prevention of apoptosis by ascorbate may involve effects beyond its function as an antioxidant.