Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashwin Unnikrishnan is active.

Publication


Featured researches published by Ashwin Unnikrishnan.


eLife | 2014

Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer.

Young Seok Ju; Ludmil B. Alexandrov; Moritz Gerstung; Inigo Martincorena; Serena Nik-Zainal; Manasa Ramakrishna; Helen Davies; Elli Papaemmanuil; Gunes Gundem; Adam Shlien; Niccolo Bolli; Sam Behjati; Patrick Tarpey; Jyoti Nangalia; C E Massie; Adam Butler; J Teague; George S. Vassiliou; Anthony R. Green; M Q Du; Ashwin Unnikrishnan; John E. Pimanda; Bin Tean Teh; Nikhil C. Munshi; Mel Greaves; Paresh Vyas; Adel K. El-Naggar; Thomas Santarius; V P Collins; Richard Grundy

Recent sequencing studies have extensively explored the somatic alterations present in the nuclear genomes of cancers. Although mitochondria control energy metabolism and apoptosis, the origins and impact of cancer-associated mutations in mtDNA are unclear. In this study, we analyzed somatic alterations in mtDNA from 1675 tumors. We identified 1907 somatic substitutions, which exhibited dramatic replicative strand bias, predominantly C > T and A > G on the mitochondrial heavy strand. This strand-asymmetric signature differs from those found in nuclear cancer genomes but matches the inferred germline process shaping primate mtDNA sequence content. A number of mtDNA mutations showed considerable heterogeneity across tumor types. Missense mutations were selectively neutral and often gradually drifted towards homoplasmy over time. In contrast, mutations resulting in protein truncation undergo negative selection and were almost exclusively heteroplasmic. Our findings indicate that the endogenous mutational mechanism has far greater impact than any other external mutagens in mitochondria and is fundamentally linked to mtDNA replication. DOI: http://dx.doi.org/10.7554/eLife.02935.001


Cancer Cell | 2014

Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells In Vivo.

Petter S. Woll; Una Kjällquist; Onima Chowdhury; Helen Doolittle; David C. Wedge; Supat Thongjuea; Mtakai Ngara; Kristina Anderson; Qiaolin Deng; Adam Mead; L Stenson; Alice Giustacchini; Eleni Giannoulatou; Stephen Taylor; Mohsen Karimi; Christian Scharenberg; Teresa Mortera-Blanco; Iain C Macaulay; Sally Ann Clark; Ingunn Dybedal; Dag Josefsen; Pierre Fenaux; Peter Hokland; Mette Holm; Mario Cazzola; Luca Malcovati; Sudhir Tauro; David G. Bowen; Jacqueline Boultwood; Andrea Pellagatti

Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.


Nature Structural & Molecular Biology | 2010

Dynamic changes in histone acetylation regulate origins of DNA replication

Ashwin Unnikrishnan; Philip R. Gafken; Toshio Tsukiyama

Although histone modifications have been implicated in many DNA-dependent processes, their precise role in DNA replication remains largely unknown. Here we describe an efficient single-step method to specifically purify histones located around an origin of replication from Saccharomyces cerevisiae. Using high-resolution MS, we have obtained a comprehensive view of the histone modifications surrounding the origin of replication throughout the cell cycle. We have discovered that acetylation of histone H3 and H4 is dynamically regulated around an origin of replication, at the level of multiply acetylated histones. Furthermore, we find that this acetylation is required for efficient origin activation during S phase.


Blood | 2013

Genome-wide analysis of transcriptional regulators in human HSPCs reveals a densely interconnected network of coding and noncoding genes

Dominik Beck; Julie A.I. Thoms; Dilmi Perera; Judith Schütte; Ashwin Unnikrishnan; Kathy Knezevic; Sarah Kinston; Nicola K. Wilson; Tracey O'Brien; Berthold Göttgens; Jason Wong; John E. Pimanda

Genome-wide combinatorial binding patterns for key transcription factors (TFs) have not been reported for primary human hematopoietic stem and progenitor cells (HSPCs), and have constrained analysis of the global architecture of molecular circuits controlling these cells. Here we provide high-resolution genome-wide binding maps for a heptad of key TFs (FLI1, ERG, GATA2, RUNX1, SCL, LYL1, and LMO2) in human CD34(+) HSPCs, together with quantitative RNA and microRNA expression profiles. We catalog binding of TFs at coding genes and microRNA promoters, and report that combinatorial binding of all 7 TFs is favored and associated with differential expression of genes and microRNA in HSPCs. We also uncover a previously unrecognized association between FLI1 and RUNX1 pairing in HSPCs, we establish a correlation between the density of histone modifications that mark active enhancers and the number of overlapping TFs at a peak, we demonstrate bivalent histone marks at promoters of heptad target genes in CD34(+) cells that are poised for later expression, and we identify complex relationships between specific microRNAs and coding genes regulated by the heptad. Taken together, these data reveal the power of integrating multifactor sequencing of chromatin immunoprecipitates with coding and noncoding gene expression to identify regulatory circuits controlling cell identity.


Proceedings of the National Academy of Sciences of the United States of America | 2016

PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells

Vashe Chandrakanthan; Avani Yeola; Jair C. Kwan; Rema Oliver; Qiao Qiao; Young Chan Kang; Peter Zarzour; Dominik Beck; Lies Boelen; Ashwin Unnikrishnan; Jeanette E. Villanueva; Andrea C. Nunez; Kathy Knezevic; Cintia Palu; Rabab Nasrallah; Michael Carnell; Alex Macmillan; Renee Whan; Yan Yu; Philip Hardy; Shane T. Grey; Amadeus Gladbach; Fabien Delerue; Lars M. Ittner; Ralph J. Mobbs; Carl R. Walkley; Louise E. Purton; Robyn L. Ward; Jason Wong; Luke B. Hesson

Significance In this report we describe the generation of tissue-regenerative multipotent stem cells (iMS cells) by treating mature bone and fat cells transiently with a growth factor [platelet-derived growth factor–AB (PDGF-AB)] and 5-Azacytidine, a demethylating compound that is widely used in clinical practice. Unlike primary mesenchymal stem cells, which are used with little objective evidence in clinical practice to promote tissue repair, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner without forming tumors. This method can be applied to both mouse and human somatic cells to generate multipotent stem cells and has the potential to transform current approaches in regenerative medicine. Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor–AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.


Cell Reports | 2016

Functional Mutations Form at CTCF-Cohesin Binding Sites in Melanoma Due to Uneven Nucleotide Excision Repair across the Motif

Rebecca C. Poulos; Julie A.I. Thoms; Yi Fang Guan; Ashwin Unnikrishnan; John E. Pimanda; Jason Wong

CTCF binding sites are frequently mutated in cancer, but how these mutations accumulate and whether they broadly perturb CTCF binding are not well understood. Here, we report that skin cancers exhibit a highly specific asymmetric mutation pattern within CTCF motifs attributable to ultraviolet irradiation and differential nucleotide excision repair (NER). CTCF binding site mutations form independently of replication timing and are enriched at sites of CTCF/cohesin complex binding, suggesting a role for cohesin in stabilizing CTCF-DNA binding and impairing NER. Performing CTCF ChIP-seq in a melanoma cell line, we show CTCF binding site mutations to be functional by demonstrating allele-specific reduction of CTCF binding to mutant alleles. While topologically associating domains with mutated CTCF anchors in melanoma contain differentially expressed cancer-associated genes, CTCF motif mutations appear generally under neutral selection. However, the frequency and potential functional impact of such mutations in melanoma highlights the need to consider their impact on cellular phenotype in individual genomes.


Bioinformatics | 2012

Signal analysis for genome-wide maps of histone modifications measured by ChIP-seq

Dominik Beck; Miriam Brandl; Lies Boelen; Ashwin Unnikrishnan; John E. Pimanda; Jason Wong

MOTIVATION Chromatin structure, including post-translational modifications of histones, regulates gene expression, alternative splicing and cell identity. ChIP-seq is an increasingly used assay to study chromatin function. However, tools for downstream bioinformatics analysis are limited and are only based on the evaluation of signal intensities. We reasoned that new methods taking into account other signal characteristics such as peak shape, location and frequencies might reveal new insights into chromatin function, particularly in situation where differences in read intensities are subtle. RESULTS We introduced an analysis pipeline, based on linear predictive coding (LPC), which allows the capture and comparison of ChIP-seq histone profiles. First, we show that the modeled signal profiles distinguish differentially expressed genes with comparable accuracy to signal intensities. The method was robust against parameter variations and performed well up to a signal-to-noise ratio of 0.55. Additionally, we show that LPC profiles of activating and repressive histone marks cluster into distinct groups and can be used to predict their function. AVAILABILITY AND IMPLEMENTATION http://www.cancerresearch.unsw.edu.au/crcweb.nsf/page/LPCHP A Matlab implementation along with usage instructions and an example input file are available from: http://www.cancerresearch.unsw.edu.au/crcweb.nsf/page/LPCHP.


Leukemia | 2015

Overexpression of ERG in cord blood progenitors promotes expansion and recapitulates molecular signatures of high ERG leukemias

Melinda L. Tursky; Dominik Beck; Julie A.I. Thoms; Yizhou Huang; A. Kumari; Ashwin Unnikrishnan; Kathy Knezevic; Kathryn Evans; Laura A. Richards; Erwin M. Lee; Jonathan M. Morris; Liat Goldberg; Shai Izraeli; Jason Wong; Jake Olivier; Richard B. Lock; Karen L. MacKenzie; John E. Pimanda

High expression of the ETS family transcription factor ERG is associated with poor clinical outcome in acute myeloid leukemia (AML) and acute T-cell lymphoblastic leukemia (T-ALL). In murine models, high ERG expression induces both T-ALL and AML. However, no study to date has defined the effect of high ERG expression on primary human hematopoietic cells. In the present study, human CD34+ cells were transduced with retroviral vectors to elevate ERG gene expression to levels detected in high ERG AML. RNA sequencing was performed on purified populations of transduced cells to define the effects of high ERG on gene expression in human CD34+ cells. Integration of the genome-wide expression data with other data sets revealed that high ERG drives an expression signature that shares features of normal hematopoietic stem cells, high ERG AMLs, early T-cell precursor-ALLs and leukemic stem cell signatures associated with poor clinical outcome. Functional assays linked this gene expression profile to enhanced progenitor cell expansion. These results support a model whereby a stem cell gene expression network driven by high ERG in human cells enhances the expansion of the progenitor pool, providing opportunity for the acquisition and propagation of mutations and the development of leukemia.


Methods of Molecular Biology | 2012

An efficient purification system for native minichromosome from Saccharomyces cerevisiae.

Ashwin Unnikrishnan; Bungo Akiyoshi; Sue Biggins; Toshio Tsukiyama

We have recently established a system for purifying minichromosomes in a native state from Saccharomyces cerevisiae. This system is extremely efficient, and a single-step purification yields samples with sufficient purity and quantity for mass spectrometry (MS) analysis of histones and non-histone proteins tightly associated with the minichromosome. The templates can also be used in various biochemical assays in vitro, such as transcription and recombination, and could be suitable for EM or other biophysical studies.


Nucleic Acids Research | 2016

A quantitative proteomics approach identifies ETV6 and IKZF1 as new regulators of an ERG-driven transcriptional network

Ashwin Unnikrishnan; Yi Fang Guan; Yizhou Huang; Dominik Beck; Julie A.I. Thoms; Sofie Peirs; Kathy Knezevic; Shiyong Ma; Inge Vande Walle; Ineke De Jong; Zara Ali; Ling Zhong; Mark J. Raftery; Tom Taghon; Jonas Larsson; Karen L. MacKenzie; Pieter Van Vlierberghe; Jason Wong; John E. Pimanda

Aberrant stem cell-like gene regulatory networks are a feature of leukaemogenesis. The ETS-related gene (ERG), an important regulator of normal haematopoiesis, is also highly expressed in T-ALL and acute myeloid leukaemia (AML). However, the transcriptional regulation of ERG in leukaemic cells remains poorly understood. In order to discover transcriptional regulators of ERG, we employed a quantitative mass spectrometry-based method to identify factors binding the 321 bp ERG +85 stem cell enhancer region in MOLT-4 T-ALL and KG-1 AML cells. Using this approach, we identified a number of known binders of the +85 enhancer in leukaemic cells along with previously unknown binders, including ETV6 and IKZF1. We confirmed that ETV6 and IKZF1 were also bound at the +85 enhancer in both leukaemic cells and in healthy human CD34+ haematopoietic stem and progenitor cells. Knockdown experiments confirmed that ETV6 and IKZF1 are transcriptional regulators not just of ERG, but also of a number of genes regulated by a densely interconnected network of seven transcription factors. At last, we show that ETV6 and IKZF1 expression levels are positively correlated with expression of a number of heptad genes in AML and high expression of all nine genes confers poorer overall prognosis.

Collaboration


Dive into the Ashwin Unnikrishnan's collaboration.

Top Co-Authors

Avatar

John E. Pimanda

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Dominik Beck

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Kathy Knezevic

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jason Wong

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Julie A.I. Thoms

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Elli Papaemmanuil

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vashe Chandrakanthan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Yizhou Huang

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge