Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asia Gobourne is active.

Publication


Featured researches published by Asia Gobourne.


Nature | 2015

Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile

Charlie G. Buffie; Vanni Bucci; Richard R. Stein; Peter T. McKenney; Lilan Ling; Asia Gobourne; Daniel No; Hui Liu; Melissa A. Kinnebrew; Agnes Viale; Eric R. Littmann; Marcel R.M. van den Brink; Robert R. Jenq; Ying Taur; Chris Sander; Justin R. Cross; Nora C. Toussaint; Joao B. Xavier; Eric G. Pamer

The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.


Clinical Infectious Diseases | 2012

Intestinal Domination and the Risk of Bacteremia in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

Ying Taur; Joao B. Xavier; Lauren Lipuma; Carles Ubeda; Jenna D. Goldberg; Asia Gobourne; Yeon Joo Lee; Krista Dubin; Nicholas D. Socci; Agnes Viale; Miguel-Angel Perales; Robert R. Jenq; Marcel R.M. van den Brink; Eric G. Pamer

BACKGROUND Bacteremia is a frequent complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). It is unclear whether changes in the intestinal microbiota during allo-HSCT contribute to the development of bacteremia. We examined the microbiota of patients undergoing allo-HSCT, and correlated microbial shifts with the risk of bacteremia. METHODS Fecal specimens were collected longitudinally from 94 patients undergoing allo-HSCT, from before transplant until 35 days after transplant. The intestinal microbiota was characterized by 454 pyrosequencing of the V1-V3 region of bacterial 16S ribosomal RNA genes. Microbial diversity was estimated by grouping sequences into operational taxonomic units and calculating the Shannon diversity index. Phylogenetic classification was obtained using the Ribosomal Database Project classifier. Associations of the microbiota with clinical predictors and outcomes were evaluated. RESULTS During allo-HSCT, patients developed reduced diversity, with marked shifts in bacterial populations inhabiting the gut. Intestinal domination, defined as occupation of at least 30% of the microbiota by a single predominating bacterial taxon, occurred frequently. Commonly encountered dominating organisms included Enterococcus, Streptococcus, and various Proteobacteria. Enterococcal domination was increased 3-fold by metronidazole administration, whereas domination by Proteobacteria was reduced 10-fold by fluoroquinolone administration. As a predictor of outcomes, enterococcal domination increased the risk of Vancomycin-resistant Enterococcus bacteremia 9-fold, and proteobacterial domination increased the risk of gram-negative rod bacteremia 5-fold. CONCLUSIONS During allo-HSCT, the diversity and stability of the intestinal flora are disrupted, resulting in domination by bacteria associated with subsequent bacteremia. Assessment of fecal microbiota identifies patients at highest risk for bloodstream infection during allo-HCST.


Journal of Experimental Medicine | 2012

Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation

Robert R. Jenq; Carles Ubeda; Ying Taur; Clarissa C. Menezes; Raya Khanin; Jarrod A. Dudakov; Chen Liu; Mallory L. West; Natalie V. Singer; Michele Equinda; Asia Gobourne; Lauren Lipuma; Lauren F. Young; Odette M. Smith; Arnab Ghosh; Alan M. Hanash; Jenna D. Goldberg; Kazutoshi Aoyama; Bruce R. Blazar; Eric G. Pamer; Marcel R.M. van den Brink

GVHD is associated with significant shifts in the composition of the intestinal microbiota in human and mouse models; manipulating the microbiota can alter the severity of GVHD in mice.


Infection and Immunity | 2012

Profound Alterations of Intestinal Microbiota following a Single Dose of Clindamycin Results in Sustained Susceptibility to Clostridium difficile-Induced Colitis

Charlie G. Buffie; Irene Jarchum; Michele Equinda; Lauren Lipuma; Asia Gobourne; Agnes Viale; Carles Ubeda; Joao B. Xavier; Eric G. Pamer

ABSTRACT Antibiotic-induced changes in the intestinal microbiota predispose mammalian hosts to infection with antibiotic-resistant pathogens. Clostridium difficile is a Gram-positive intestinal pathogen that causes colitis and diarrhea in patients following antibiotic treatment. Clindamycin predisposes patients to C. difficile colitis. Here, we have used Roche-454 16S rRNA gene pyrosequencing to longitudinally characterize the intestinal microbiota of mice following clindamycin treatment in the presence or absence of C. difficile infection. We show that a single dose of clindamycin markedly reduces the diversity of the intestinal microbiota for at least 28 days, with an enduring loss of ca. 90% of normal microbial taxa from the cecum. Loss of microbial complexity results in dramatic sequential expansion and contraction of a subset of bacterial taxa that are minor contributors to the microbial consortium prior to antibiotic treatment. Inoculation of clindamycin-treated mice with C. difficile (VPI 10463) spores results in rapid development of diarrhea and colitis, with a 4- to 5-day period of profound weight loss and an associated 40 to 50% mortality rate. Recovering mice resolve diarrhea and regain weight but remain highly infected with toxin-producing vegetative C. difficile bacteria and, in comparison to the acute stage of infection, have persistent, albeit ameliorated cecal and colonic inflammation. The microbiota of “recovered” mice remains highly restricted, and mice remain susceptible to C. difficile infection at least 10 days following clindamycin, suggesting that resolution of diarrhea and weight gain may result from the activation of mucosal immune defenses.


Blood | 2014

The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation.

Ying Taur; Robert R. Jenq; Miguel-Angel Perales; Eric R. Littmann; Sejal M. Morjaria; Lilan Ling; Daniel No; Asia Gobourne; Agnes Viale; Parastoo B. Dahi; Doris M. Ponce; Juliet N. Barker; Sergio Giralt; Marcel R.M. van den Brink; Eric G. Pamer

Highly diverse bacterial populations inhabit the gastrointestinal tract and modulate host inflammation and promote immune tolerance. In allogeneic hematopoietic stem cell transplantation (allo-HSCT), the gastrointestinal mucosa is damaged, and colonizing bacteria are impacted, leading to an impaired intestinal microbiota with reduced diversity. We examined the impact of intestinal diversity on subsequent mortality outcomes following transplantation. Fecal specimens were collected from 80 recipients of allo-HSCT at the time of stem cell engraftment. Bacterial 16S rRNA gene sequences were characterized, and microbial diversity was estimated using the inverse Simpson index. Subjects were classified into high, intermediate, and low diversity groups and assessed for differences in outcomes. Mortality outcomes were significantly worse in patients with lower intestinal diversity; overall survival at 3 years was 36%, 60%, and 67% for low, intermediate, and high diversity groups, respectively (P = .019, log-rank test). Low diversity showed a strong effect on mortality after multivariate adjustment for other clinical predictors (transplant related mortality: adjusted hazard ratio, 5.25; P = .014). In conclusion, the diversity of the intestinal microbiota at engraftment is an independent predictor of mortality in allo-HSCT recipients. These results indicate that the intestinal microbiota may be an important factor in the success or failure in allo-HSCT.


Journal of Experimental Medicine | 2012

Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice

Carles Ubeda; Lauren Lipuma; Asia Gobourne; Agnes Viale; Ingrid Leiner; Michele Equinda; Raya Khanin; Eric G. Pamer

Differences between TLR-deficient mouse colonies occur from extended husbandry in isolation that are communicated to offspring by maternal transmission.


Infection and Immunity | 2013

Intestinal Microbiota Containing Barnesiella Species Cures Vancomycin-Resistant Enterococcus faecium Colonization

Carles Ubeda; Vanni Bucci; Silvia Caballero; Ana Djukovic; Nora C. Toussaint; Michele Equinda; Lauren Lipuma; Lilan Ling; Asia Gobourne; Daniel No; Ying Taur; Robert R. Jenq; Marcel R.M. van den Brink; Joao B. Xavier; Eric G. Pamer

ABSTRACT Bacteria causing infections in hospitalized patients are increasingly antibiotic resistant. Classical infection control practices are only partially effective at preventing spread of antibiotic-resistant bacteria within hospitals. Because the density of intestinal colonization by the highly antibiotic-resistant bacterium vancomycin-resistant Enterococcus (VRE) can exceed 109 organisms per gram of feces, even optimally implemented hygiene protocols often fail. Decreasing the density of intestinal colonization, therefore, represents an important approach to limit VRE transmission. We demonstrate that reintroduction of a diverse intestinal microbiota to densely VRE-colonized mice eliminates VRE from the intestinal tract. While oxygen-tolerant members of the microbiota are ineffective at eliminating VRE, administration of obligate anaerobic commensal bacteria to mice results in a billionfold reduction in the density of intestinal VRE colonization. 16S rRNA gene sequence analysis of intestinal bacterial populations isolated from mice that cleared VRE following microbiota reconstitution revealed that recolonization with a microbiota that contains Barnesiella correlates with VRE elimination. Characterization of the fecal microbiota of patients undergoing allogeneic hematopoietic stem cell transplantation demonstrated that intestinal colonization with Barnesiella confers resistance to intestinal domination and bloodstream infection with VRE. Our studies indicate that obligate anaerobic bacteria belonging to the Barnesiella genus enable clearance of intestinal VRE colonization and may provide novel approaches to prevent the spread of highly antibiotic-resistant bacteria.


Biology of Blood and Marrow Transplantation | 2015

Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease.

Robert R. Jenq; Ying Taur; Sean M. Devlin; Doris M. Ponce; Jenna D. Goldberg; Katya F. Ahr; Eric R. Littmann; Lilan Ling; Asia Gobourne; Liza Miller; Melissa D. Docampo; Jonathan U. Peled; Nicholas Arpaia; Justin R. Cross; Tatanisha Peets; Melissa Lumish; Yusuke Shono; Jarrod A. Dudakov; Hendrik Poeck; Alan M. Hanash; Juliet N. Barker; Miguel-Angel Perales; Sergio Giralt; Eric G. Pamer; Marcel R.M. van den Brink

The relationship between intestinal microbiota composition and acute graft-versus-host disease (GVHD) after allogeneic blood/marrow transplantation (allo-BMT) is not well understood. Intestinal bacteria have long been thought to contribute to GVHD pathophysiology, but recent animal studies in nontransplant settings have found that anti-inflammatory effects are mediated by certain subpopulations of intestinal commensals. Hypothesizing that a more nuanced relationship may exist between the intestinal bacteria and GVHD, we evaluated the fecal bacterial composition of 64 patients 12 days after BMT. We found that increased bacterial diversity was associated with reduced GVHD-related mortality. Furthermore, harboring increased amounts of bacteria belonging to the genus Blautia was associated with reduced GVHD lethality in this cohort and was confirmed in another independent cohort of 51 patients from the same institution. Blautia abundance was also associated with improved overall survival. We evaluated the abundance of Blautia with respect to clinical factors and found that loss of Blautia was associated with treatment with antibiotics that inhibit anaerobic bacteria and receiving total parenteral nutrition for longer durations. We conclude that increased abundance of commensal bacteria belonging to the Blautia genus is associated with reduced lethal GVHD and improved overall survival.


Nature Communications | 2016

Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis

Krista Dubin; Margaret K. Callahan; Boyu Ren; Raya Khanin; Agnes Viale; Lilan Ling; Daniel No; Asia Gobourne; Eric R. Littmann; Curtis Huttenhower; Eric G. Pamer; Jedd D. Wolchok

The composition of the intestinal microbiota influences the development of inflammatory disorders. However, associating inflammatory diseases with specific microbial members of the microbiota is challenging, because clinically detectable inflammation and its treatment can alter the microbiotas composition. Immunologic checkpoint blockade with ipilimumab, a monoclonal antibody that blocks cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) signalling, is associated with new-onset, immune-mediated colitis. Here we conduct a prospective study of patients with metastatic melanoma undergoing ipilimumab treatment and correlate the pre-inflammation faecal microbiota and microbiome composition with subsequent colitis development. We demonstrate that increased representation of bacteria belonging to the Bacteroidetes phylum is correlated with resistance to the development of checkpoint-blockade-induced colitis. Furthermore, a paucity of genetic pathways involved in polyamine transport and B vitamin biosynthesis is associated with an increased risk of colitis. Identification of these biomarkers may enable interventions to reduce the risk of inflammatory complications following cancer immunotherapy.


The Journal of Infectious Diseases | 2015

Loss of Microbiota-Mediated Colonization Resistance to Clostridium difficile Infection With Oral Vancomycin Compared With Metronidazole

Brittany B. Lewis; Charlie G. Buffie; Rebecca A. Carter; Ingrid Leiner; Nora C. Toussaint; Liza Miller; Asia Gobourne; Lilan Ling; Eric G. Pamer

Antibiotic administration disrupts the intestinal microbiota, increasing susceptibility to pathogens such as Clostridium difficile. Metronidazole or oral vancomycin can cure C. difficile infection, and administration of these agents to prevent C. difficile infection in high-risk patients, although not sanctioned by Infectious Disease Society of America guidelines, has been considered. The relative impacts of metronidazole and vancomycin on the intestinal microbiota and colonization resistance are unknown. We investigated the effect of brief treatment with metronidazole and/or oral vancomycin on susceptibility to C. difficile, vancomycin-resistant Enterococcus, carbapenem-resistant Klebsiella pneumoniae, and Escherichia coli infection in mice. Although metronidazole resulted in transient loss of colonization resistance, oral vancomycin markedly disrupted the microbiota, leading to prolonged loss of colonization resistance to C. difficile infection and dense colonization by vancomycin-resistant Enterococcus, K. pneumoniae, and E. coli. Our results demonstrate that vancomycin, and to a lesser extent metronidazole, are associated with marked intestinal microbiota destruction and greater risk of colonization by nosocomial pathogens.

Collaboration


Dive into the Asia Gobourne's collaboration.

Top Co-Authors

Avatar

Eric G. Pamer

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Marcel R.M. van den Brink

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Robert R. Jenq

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ying Taur

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lauren Lipuma

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Agnes Viale

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lilan Ling

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel No

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Eric R. Littmann

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge