Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asif Qureshi is active.

Publication


Featured researches published by Asif Qureshi.


Environmental Science & Technology | 2010

Photoreactions of Mercury in Surface Ocean Water: Gross Reaction Kinetics and Possible Pathways

Asif Qureshi; Nelson J. O'driscoll; Matthew MacLeod; Yorck-Michael Neuhold; Konrad Hungerbühler

We present pseudofirst order rate constants for gross photoreduction and gross photooxidation of mercury in surface water from the open Atlantic Ocean, determined under controlled laboratory conditions. Experiments using both unfiltered and filtered ocean water were carried out to characterize the importance of microbes and colloids on reaction kinetics. Results indicate that reduction and oxidation of mercury in ocean water does not follow a simple two-species reversible reaction pathway. We suggest two possible redox pathways that reproduce the pattern of dissolved gaseous mercury (DGM) concentrations observed in our laboratory experiments, and evaluate them using a controlled outdoor experiment. In both proposed pathways Hg(0), the major constituent of DGM, is converted to an unidentified oxidized species that is different from the reducible form present initially. This reaction step plays a major role in the net formation of DGM in our experiments. Our results represent new quantitative information about the gross reaction kinetics for both reduction and oxidation of mercury in open ocean surface water. Pseudofirst order rate constants for reduction reactions that form DGM were determined to be in the range of 0.15-0.93 h(-1) and pseudofirst order rate constants for oxidation of Hg(0) to be in the range of 0.4-1.9 h(-1). Microbes and colloids did not appreciably influence the reduction and oxidation kinetics.


Environmental Science & Technology | 2013

Anthropogenic mercury flows in India and impacts of emission controls.

Laura Burger Chakraborty; Asif Qureshi; Carl Vadenbo; Stefanie Hellweg

India is a major emitter of mercury, a pollutant of global importance. However, quantitative information on mercury flows in the country is lacking. Here, we quantify major transfer pathways for anthropogenic mercury, its emissions to the environment (air, water, soil), and storage in consumer products and anthropogenic sinks (e.g., landfills) in India in the period 2001-2020, and evaluate the potential influence of six pollution control measures. Total mercury emissions in India were approximately 415 tonnes in 2001, 310 tonnes in 2010, and are projected to rise to 540 tonnes in 2020. In 2010, 76% of these emissions went to the atmosphere. The most important emission sources to atmosphere are coal power plants and zinc production. Pesticides were the most important source for emissions to soil in 2005 and dental amalgam in later years. Mercury stocks in products rose from 700 tonnes in 2001 to 1125 tonnes in 2010, and in landfills and ash-made structures (e.g., embankments) from 920 tonnes in 2001 to 1450 tonnes in 2010. These stocks are expected to rise further and may be regarded as stored toxicity, which may become a concern in the future. Total mercury emissions can be reduced by about 50% by combining pollution control measures that target different mercury emission sources.


Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2008

Microwave treatment and struvite recovery potential of dairy manure

Asif Qureshi; K.V. Lo; P.H. Liao

Microwave digestion of liquid dairy manure was tested for the release of nutrients, such as orthophosphates, ammonia-nitrogen, magnesium, calcium and potassium, both with and without the aid of an oxidizing agent (hydrogen peroxide). The orthophosphate to total phosphorus ratio of the manure increased from 21% to greater than 80% with 5 minutes of microwave treatment. More than 36% of total chemical oxygen demand (t-COD) of the manure was reduced when microwave digestion was assisted with peroxide addition. In addition, the volatile fatty acids (VFAs) distribution shifted to simpler chain acids (acetic acid in particular) with an increase in operating temperature. In the second part of the study, digested manure with increased soluble phosphate was tested for the recovery of struvite (magnesium ammonium phosphate) at different pH. It was found that up to 90% of orthophosphate can be removed from the solution. Overall, it was concluded that the oxidizing agent-assisted microwave digestion process can be used upstream of anaerobic digestion, following which the anaerobically digested manure can be used for struvite recovery. Thus, this microwave digestion process presents the potential for enhanced efficiencies in both manure digestion and struvite recovery.


Environmental Pollution | 2009

Mercury cycling and species mass balances in four North American lakes

Asif Qureshi; Matthew MacLeod; Martin Scheringer; Konrad Hungerbühler

A mass balance model for mercury based on the fugacity concept is applied to Lake Superior, Lake Michigan, Onondaga Lake and Little Rock Lake to evaluate model performance, analyze cycling of three mercury species groups (elemental, divalent and methyl mercury), and identify important processes that determine the source-to-concentration relationship of the three mercury species groups in these lakes. This model application to four disparate ecosystems is an extension of previous applications of fugacity-based models describing mercury cycling. The model performs satisfactorily following site-specific parameterization, and provides an estimate of minimum rates of species interconversion that compare well with literature. Volatilization and sediment burial are the main processes removing mercury from the lakes, and uncertainty analyses indicate that air-water exchange of elemental mercury and water-sediment exchange of divalent mercury attached to particles are influential in governing mercury concentrations in water. Any new model application or field campaign to quantify mercury cycling in a lake should consider these processes as important.


Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2006

Dairy Manure Treatment, Digestion and Nutrient Recovery as a Phosphate Fertilizer

Asif Qureshi; K.V. Lo; Donald S. Mavinic; P.H. Liao; Frederich Koch; Harlan G. Kelly

A combined approach of biological treatment, solids digestion and nutrient recovery was tested on dairy manure. A sequencing batch reactor (SBR) was operated in three modes, in order to optimize nutrient (nitrogen and phosphorus) removals. The highest average removal efficiencies of 91% for NH4-N, 59% for PO4-P and 80% for total chemical oxygen demand (COD) were achieved. Staining experiments suggested the coexistence of glycogen and phosphorus accumulating organisms. Anaerobic digestion of wasted bio-solids was able to produce a PO4-P concentration of 70 mgL−1 in the supernatant. A pilot-scale experiment, designed to recover phosphorus in the supernatant as struvite (magnesium ammonium phosphate), was able to remove 82% of soluble PO4-P.


Chemosphere | 2009

Modeling aerosol suspension from soils and oceans as sources of micropollutants to air

Asif Qureshi; Matthew MacLeod; Konrad Hungerbühler

Soil and marine aerosol suspension are two physical mass transfer processes that are not usually included in models describing fate and transport of environmental pollutants. Here, we review the literature on soil and marine aerosol suspension and estimate aerosol suspension mass transfer velocities for inclusion in multimedia models, as a global average and on a 1 x 1 scale. The yearly, global average mass transfer velocity for soil aerosol suspension is estimated to be 6 x 10(-10)mh(-1), approximately an order of magnitude smaller than marine aerosol suspension, which is estimated to be 8 x 10(-9)mh(-1). Monthly averages of these velocities can be as high as 10(-7)mh(-1) and 10(-5)mh(-1) for soil and marine aerosol suspension, respectively, depending on location. We use a unit-world multimedia model to analyze the relevance of these two suspension processes as a mechanism that enhances long-range atmospheric transport of pollutants. This is done by monitoring a metric of long-range transport potential, phi-one thousand (phi1000), that denotes the fraction of modeled emissions to air, water or soil in a source region that reaches a distance of 1000 km in air. We find that when the yearly, globally averaged mass transfer velocity is used, marine aerosol suspension increases phi1000 only fractionally for both emissions to air and water. However, enrichment of substances in marine aerosols, or speciation between ionic and neutral forms in ocean water may increase the influence of this surface-to-air transfer process. Soil aerosol suspension can be the dominant process for soil-to-air transfer in an emission-to-soil scenario for certain substances that have a high affinity to soil. When a suspension mass transfer velocity near the maximum limit is used, soil suspension remains important if the emissions are made to soil, and marine aerosol suspension becomes important regardless of if emissions are made to air or water compartments. We recommend that multimedia models designed to assess the environmental fate and long-range transport behavior of substances with a range of chemical properties include both aerosol suspension processes, using the mass transfer velocities estimated here.


Environmental Science & Technology | 2018

A Model for Methylmercury Uptake and Trophic Transfer by Marine Plankton

Amina T. Schartup; Asif Qureshi; Clifton Dassuncao; Colin P. Thackray; Gareth C. Harding; Elsie M. Sunderland

Methylmercury (MeHg) concentrations can increase by 100 000 times between seawater and marine phytoplankton, but levels vary across sites. To better understand how ecosystem properties affect variability in planktonic MeHg concentrations, we develop a model for MeHg uptake and trophic transfer at the base of marine food webs. The model successfully reproduces measured concentrations in phytoplankton and zooplankton across diverse sites from the Northwest Atlantic Ocean. Highest MeHg concentrations in phytoplankton are simulated under low dissolved organic carbon (DOC) concentrations and ultraoligotrophic conditions typical of open ocean regions. This occurs because large organic complexes bound to MeHg inhibit cellular uptake and cell surface area to volume ratios are greatest under low productivity conditions. Modeled bioaccumulation factors for phytoplankton (102.4-105.9) are more variable than those for zooplankton (104.6-106.2) across ranges in DOC (40-500 μM) and productivities (ultraoligotrophic to hypereutrophic) typically found in marine ecosystems. Zooplankton growth dilutes their MeHg body burden, but they also consume greater quantities of MeHg enriched prey at larger sizes. These competing processes lead to lower variability in MeHg concentrations in zooplankton compared to phytoplankton. Even under hypereutrophic conditions, modeled growth dilution in marine zooplankton is insufficient to lower their MeHg concentrations, contrasting findings from freshwater ecosystems.


Bioresource Technology | 2008

Real-time treatment of dairy manure : Implications of oxidation reduction potential regimes to nutrient management strategies

Asif Qureshi; K. Victor Lo; P.H. Liao; Donald S. Mavinic


Global Biogeochemical Cycles | 2011

Quantifying uncertainties in the global mass balance of mercury

Asif Qureshi; Matthew MacLeod; Konrad Hungerbühler


Environmental Chemistry and Toxicology of Mercury | 2011

Exchange of Elemental Mercury between the Oceans and the Atmosphere

Asif Qureshi; Matthew MacLeod; Elsie M. Sunderland; Konrad Hungerbühler

Collaboration


Dive into the Asif Qureshi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P.H. Liao

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Donald S. Mavinic

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

K.V. Lo

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederich Koch

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Gareth C. Harding

Bedford Institute of Oceanography

View shared research outputs
Top Co-Authors

Avatar

K. Victor Lo

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge