Asim Aziz
College of Electrical and Mechanical Engineering
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Asim Aziz.
Applied Mathematics and Computation | 2012
Asim Aziz; Taha Aziz
The present work deals with the modeling and solution of the unsteady flow of an incompressible third grade fluid over a porous plate within a porous medium. The flow is generated due to an arbitrary velocity of the porous plate. The fluid is electrically conducting in the presence of a uniform magnetic field applied transversely to the flow. Lie group theory is employed to find symmetries of the modeled equation. These symmetries have been applied to transform the original third order partial differential equation into third order ordinary differential equations. These third order ordinary differential equations are then solved analytically and numerically. The manner in which various emerging parameters have an effect on the structure of the velocity is discussed with the help of several graphs.
PLOS ONE | 2015
Asim Aziz; Yasir Ali; Taha Aziz; J. I. Siddique
In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined.
PLOS ONE | 2014
Asim Aziz; J. I. Siddique; Taha Aziz
In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.
Zeitschrift für Naturforschung A | 2016
Taha Aziz; Asim Aziz; Chaudry Masood Khalique
Abstract The fully developed time-dependent flow of an incompressible, thermodynamically compatible non-Newtonian third-grade nanofluid is investigated. The classical Stokes model is considered in which the flow is generated due to the motion of the plate in its own plane with an impulsive velocity. The Lie symmetry approach is utilised to convert the governing nonlinear partial differential equation into different linear and nonlinear ordinary differential equations. The reduced ordinary differential equations are then solved by using the compatibility and generalised group method. Exact solutions for the model equation are deduced in the form of closed-form exponential functions which are not available in the literature before. In addition, we also derived the conservation laws associated with the governing model. Finally, the physical features of the pertinent parameters are discussed in detail through several graphs.
Central European Journal of Physics | 2018
Asim Aziz; Wasim Jamshed; Taha Aziz
Abstract In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.
International Journal of Modern Physics B | 2016
Asim Aziz; Muhammad Shoaib
In the present paper a one-dimensional mathematical model of a cerebral aneurysm is considered. The model combines the interaction between the arterial wall structure, blood pressure and the cerebral spinal fluid (CSF) that is around the aneurysm. CSF is considered electrically conducting in the presence of a uniform magnetic field. Therefore, it may be possible to control pressure and its flow behavior by using an appropriate magnetic field. Hence, such studies have potential for the treatment of Cerebral aneurysms, diseases of heart and blood vessels. The modeled mathematical equations are solved algebraically and the displacement of the arterial wall is plotted to visualize the wall movement. It is evident from the graphs the inclusion of magnetic field reduce the movement of the arterial wall and in turn prevent the rupture of the cerebral aneurysm. The solution is also investigated using computational tools for various other parameters involve in the model.
Zeitschrift für Naturforschung A | 2015
Taha Aziz; Aeeman Fatima; Asim Aziz; F. M. Mahomed
Abstract In this study, an incompressible time-dependent flow of a fourth-grade fluid in a porous half space is investigated. The flow is generated due to the motion of the flat rigid plate in its own plane with an impulsive velocity. The partial differential equation governing the motion is reduced to ordinary differential equations by means of the Lie group theoretic analysis. A complete group analysis is performed for the governing nonlinear partial differential equation to deduce all possible Lie point symmetries. One-dimensional optimal systems of subalgebras are also obtained, which give all possibilities for classifying meaningful solutions in using the Lie group analysis. The conditional symmetry approach is also utilised to solve the governing model. Various new classes of group-invariant solutions are developed for the model problem. Travelling wave solutions, steady-state solution, and conditional symmetry solutions are obtained as closed-form exponential functions. The influence of pertinent parameters on the fluid motion is graphically underlined and discussed.
Applied Nanoscience | 2018
Wasim Jamshed; Asim Aziz
In the present research, a simplified mathematical model is presented to study the heat transfer and entropy generation analysis of thermal system containing hybrid nanofluid. Nanofluid occupies the space over an infinite horizontal surface and the flow is induced by the non-linear stretching of surface. A uniform transverse magnetic field, Cattaneo–Christov heat flux model and thermal radiation effects are also included in the present study. The similarity technique is employed to reduce the governing non-linear partial differential equations to a set of ordinary differential equation. Keller Box numerical scheme is then used to approximate the solutions for the thermal analysis. Results are presented for conventional copper oxide–ethylene glycol (CuO–EG) and hybrid titanium–copper oxide/ethylene glycol (TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
Central European Journal of Physics | 2017
Sajid Hussain; Asim Aziz; Chaudhry Masood Khalique; Taha Aziz
Thermal Science | 2016
Saba Javaid; Asim Aziz
{\text {TiO}}_2