Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asish K. Das is active.

Publication


Featured researches published by Asish K. Das.


Journal of Biological Chemistry | 2011

Involvement of Protein Kinase Cδ/Extracellular Signal-regulated Kinase/Poly(ADP-ribose) Polymerase-1 (PARP-1) Signaling Pathway in Histamine-induced Up-regulation of Histamine H1 Receptor Gene Expression in HeLa Cells

Hiroyuki Mizuguchi; Takuma Terao; Mika Kitai; Mitsuhiro Ikeda; Yoshiyuki Yoshimura; Asish K. Das; Yoshiaki Kitamura; Noriaki Takeda; Hiroyuki Fukui

The histamine H1 receptor (H1R) gene is up-regulated in patients with allergic rhinitis. However, the mechanism and reason underlying this up-regulation are still unknown. Recently, we reported that the H1R expression level is strongly correlated with the severity of allergic symptoms. Therefore, understanding the mechanism of this up-regulation will help to develop new anti-allergic drugs targeted for H1R gene expression. Here we studied the molecular mechanism of H1R up-regulation in HeLa cells that express H1R endogenously in response to histamine and phorbol 12-myristate 13-acetate (PMA). In HeLa cells, histamine stimulation caused up-regulation of H1R gene expression. Rottlerin, a PKCδ-selective inhibitor, inhibited up-regulation of H1R gene expression, but Go6976, an inhibitor of Ca2+-dependent PKCs, did not. Histamine or PMA stimulation resulted in PKCδ phosphorylation at Tyr311 and Thr505. Activation of PKCδ by H2O2 resulted in H1R mRNA up-regulation. Overexpression of PKCδ enhanced up-regulation of H1R gene expression, and knockdown of the PKCδ gene suppressed this up-regulation. Histamine or PMA caused translocation PKCδ from the cytosol to the Golgi. U0126, an MEK inhibitor, and DPQ, a poly(ADP-ribose) polymerase-1 inhibitor, suppressed PMA-induced up-regulation of H1R gene expression. These results were confirmed by a luciferase assay using the H1R promoter. Phosphorylation of ERK and Raf-1 in response to PMA was also observed. However, real-time PCR analysis showed no inhibition of H1R mRNA up-regulation by a Raf-1 inhibitor. These results suggest the involvement of the PKCδ/ERK/poly(ADP-ribose) polymerase-1 signaling pathway in histamine- or PMA-induced up-regulation of H1R gene expression in HeLa cells.


Allergology International | 2009

Sho-seiryu-to Suppresses Histamine Signaling at the Transcriptional Level in TDI-Sensitized Nasal Allergy Model Rats

Asish K. Das; Hiroyuki Mizuguchi; Madoka Kodama; Shrabanti Dev; Hayato Umehara; Yoshiaki Kitamura; Chiyo Matsushita; Noriaki Takeda; Hiroyuki Fukui

BACKGROUND The therapeutic use of Kampo medicine, Sho-seiryu-to (SST) in allergic disorders is well known. As histamine plays a central role in allergic diseases, it is possible that SST affects the allergy-related histamine signaling. In this study, we investigated the effect of SST on allergy-related histamine signaling in the nasal mucosa of toluene 2, 4-diisocyanate (TDI)-sensitized nasal allergy model rats. METHODS Six-week-old male, Brown Norway rats were sensitized for 2 weeks with 10 microl of 10% TDI, and after a 1 week interval, provocation was initiated with the same amount of TDI. SST (0.6g/rat) was given orally 1 hour before TDI treatment began for a period of 3 weeks. Nasal symptoms were scored for 10 minutes immediately after TDI-provocation. The genes expression in nasal mucosa was determined using real-time quantitative RT-PCR. RESULTS SST significantly suppressed TDI-induced nasal allergy-like symptoms. TDI provocation showed a significant up-regulation of histamine H(1) receptor (H1R) and histidine decarboxylase (HDC) gene expressions. Prolonged pre-treatment of SST significantly suppressed the mRNA levels of H1R and HDC that was up-regulated by TDI. SST also suppressed TDI-induced interleukin (IL)-4 and IL-5 mRNA elevation. However, SST showed no significant effect for TDI-induced mRNA elevation of IL-13. CONCLUSIONS These results demonstrate that SST alleviates nasal symptoms by the inhibition of histamine signaling through suppression of TDI-induced H1R and HDC gene up-regulation. SST also suppresses cytokine signaling through suppression of IL-4 and IL-5 gene expression. Suppression of histamine signaling may be a novel mechanism of SST in preventing allergic diseases.


Journal of Pharmacy and Pharmacology | 2007

Heterologous up‐regulation of the histamine H1 receptor by M3 muscarinic receptor‐mediated activation of H1‐receptor gene transcription

Katsuhiro Miyoshi; Nozomi Kawakami; Asish K. Das; Katsumi Fujimoto; Shuhei Horio; Hiroyuki Fukui

Histamine H1 receptor (H1R) level varies under various pathological conditions, and these changes may be responsible for some pathogenesis, such as allergic rhinitis. Previously, we showed that H1R was heterologously down‐regulated (through degradation of H1R) by prolonged stimulation with muscarinic M3 receptor (M3R) in Chinese hamster ovary (CHO) cells stably expressing H1R and M3R. However, this cell was inadequate for studying the effects on H1R gene regulation, because the cell expresses H1R, which is under the control of the SV40 promoter. Therefore, in this study, we have investigated the possible role of M3R stimulation in the H1R gene transcription and H1R mRNA stability by using U373 astrocytoma cells that express endogenous H1R and transfected M3R. Stimulation of M3R significantly increased H1R promoter activity and H1R mRNA level without alteration in H1R mRNA stability. The H1R level was also up‐regulated by M3R activation (150% of control by treatment with carbachol for 24 h). These M3R‐mediated events were almost completely blocked by the protein kinase C (PKC) inhibitor, Ro 31–8220, suggesting the involvement of PKC. These results indicated that M3R was involved in the up‐regulation of H1R by activating H1R gene transcription through a PKC‐dependent process.


International Immunopharmacology | 2011

Transcriptional microarray analysis reveals suppression of histamine signaling by Kujin alleviates allergic symptoms through down-regulation of FAT10 expression

Shrabanti Dev; Hiroyuki Mizuguchi; Asish K. Das; Yoshinobu Baba; Hiroyuki Fukui

Previously, we have shown that hot water extract from Kujin, the dried roots of Sophora flavescens alleviates allergic symptoms by suppressing histamine signaling at the transcription level in toluene 2,4-diisocyanate (TDI)-sensitized rats. To know more insights into the mechanism of the anti-allergic action of Kujin, we carried out the microarray analysis to explore genes that were up-regulated by treatment with TDI and also were suppressed these up-regulated gene expression by Kujin. Microarray analysis revealed the substantial up-regulation of FAT10 (also called UbD) mRNA due to TDI sensitization and Kujin extract significantly suppressed this up-regulation. FAT10 is an ubiquitin like protein having an active role in the immune system and is induced by proinflammatory cytokines. Activation of NF-κB by FAT10 also has been reported. However, the role of FAT10 in allergic pathogenesis remains unknown. Here we investigated the correlation of FAT10-NF-κB signaling with histamine signaling in TDI-sensitized rats. Real time RT-PCR analysis confirmed that treatment with TDI up-regulated FAT10 mRNA expression in the nasal mucosa of TDI-sensitized rats and Kujin extract suppressed this elevation. Treatment with H(1)-antihistamines suppressed the TDI-induced up-regulation of FAT10 mRNA expression in TDI-sensitized rats. Direct administration of histamine into the nasal cavity of non-TDI-treated normal rats up-regulated the expression of FAT10 mRNA. Our data suggest that Kujin might alleviate allergic symptoms by inhibition of NF-κB activation through suppression of histamine-induced up-regulation of FAT10 mRNA expression.


Journal of Pharmacological Sciences | 2016

Suplatast tosilate alleviates nasal symptoms through the suppression of nuclear factor of activated T-cells-mediated IL-9 gene expression in toluene-2,4-diisocyanate-sensitized rats.

Hiroyuki Mizuguchi; Naoki Orimoto; Takuya Kadota; Takahiro Kominami; Asish K. Das; Akiho Sawada; Misaki Tamada; Kohei Miyagi; Tsubasa Adachi; Mayumi Matsumoto; Tomoya Kosaka; Yoshiaki Kitamura; Noriaki Takeda; Hiroyuki Fukui

Histamine H1 receptor (H1R) gene is upregulated in patients with pollinosis; its expression level is highly correlated with the nasal symptom severity. Antihistamines are widely used as allergy treatments because they inhibit histamine signaling by blocking H1R or suppressing H1R signaling as inverse agonists. However, long-term treatment with antihistamines does not completely resolve toluene-2,4-diisocyanate (TDI)-induced nasal symptoms, although it can decrease H1R gene expression to the basal level, suggesting additional signaling is responsible for the pathogenesis of the allergic symptoms. Here, we show that treatment with suplatast tosilate in combination with antihistamines markedly alleviates nasal symptoms in TDI-sensitized rats. Suplatast suppressed TDI-induced upregulation of IL-9 gene expression. Suplatast also suppressed ionomycin/phorbol-12-myristate-13-acetate-induced upregulation of IL-2 gene expression in Jurkat cells, in which calcineurin (CN)/nuclear factor of activated T-cells (NFAT) signaling is known to be involved. Immunoblot analysis demonstrated that suplatast inhibited binding of NFAT to DNA. Furthermore, suplatast suppressed ionomycin-induced IL-9 mRNA upregulation in RBL-2H3 cells, in which CN/NFAT signaling is also involved. These data suggest that suplatast suppressed NFAT-mediated IL-9 gene expression in TDI-sensitized rats and this might be the underlying mechanism of the therapeutic effects of combined therapy of suplatast with antihistamine.


Journal of Pharmacological Sciences | 2016

Antihistamines suppress upregulation of histidine decarboxylase gene expression with potencies different from their binding affinities for histamine H1 receptor in toluene 2,4-diisocyanate-sensitized rats.

Hiroyuki Mizuguchi; Asish K. Das; Kazutaka Maeyama; Shrabanti Dev; Masum Shahriar; Yoshiaki Kitamura; Noriaki Takeda; Hiroyuki Fukui

Antihistamines inhibit histamine signaling by blocking histamine H1 receptor (H1R) or suppressing H1R signaling as inverse agonists. The H1R gene is upregulated in patients with pollinosis, and its expression level is correlated with the severity of nasal symptoms. Here, we show that antihistamine suppressed upregulation of histidine decarboxylase (HDC) mRNA expression in patients with pollinosis, and its expression level was correlated with that of H1R mRNA. Certain antihistamines, including mepyramine and diphenhydramine, suppress toluene-2,4-diisocyanate (TDI)-induced upregulation of HDC gene expression and increase HDC activity in TDI-sensitized rats. However, d-chlorpheniramine did not demonstrate any effect. The potencies of antihistamine suppressive effects on HDC mRNA elevation were different from their H1R receptor binding affinities. In TDI-sensitized rats, the potencies of antihistamine inhibitory effects on sneezing in the early phase were related to H1R binding. In contrast, the potencies of their inhibitory effects on sneezing in the late phase were correlated with those of suppressive effects on HDC mRNA elevation. Data suggest that in addition to the antihistaminic and inverse agonistic activities, certain antihistamines possess additional properties unrelated to receptor binding and alleviate nasal symptoms in the late phase by inhibiting synthesis and release of histamine by suppressing HDC gene transcription.


Iubmb Life | 2018

Anxiolytic effect of anacardic acids from cashew (Anacardium occidentale) nut shell in mice

Antonio Luiz Gomes Júnior; Jana Tchekalarova; Keylla da Conceição Machado; Arkellau Kenned Silva Moura; Márcia Fernanda Correia Jardim Paz; Ana Maria Oliveira Ferreira da Mata; Tiago Rocha Nogueira; Muhammad Torequl Islam; Maria Alexsandra de Sousa Rios; Antônia Maria das Graças Lopes Citó; Shaikh Jamal Uddin; Jamil A. Shilpi; Asish K. Das; Luciano da Silva Lopes; Ana Amélia de Carvalho Melo-Cavalcante

Antianxiety drugs currently in use are associated with a number of serious side effects. Present study was designed to evaluate the efficacy of anacardic acids (AAs) isolated from cashew nut (Anacardium occidentale L.) shell liquid (CNSL) to treat anxiety as well as its role in oxidative stress in mice model. Anxiolytic effect of AA was evaluated using rota‐rod and a set of behavioral tests in male Swiss albino mice at the doses of 10, 25, and 50 mg/kg. Flumazenil was used to evaluate the possible involvement of GABAergic system in the mechanism of action of AA. The effect of AA on oxidative stress in mice was evaluated by determining the concentration of malondialdehyde (MDA), reduced glutathione, and catalase (CAT) activity. The detection of DNA damage of the treated animals was performed using alkaline comet test in the hippocampus and frontal cortex of the animals. The results demonstrated that AA did not produce myorelaxant and sedative effects, nor did it cause a decrease in locomotor activity. The anxiolytic effect of AA was well‐evident in all tests, especially at higher dose levels (25 and 50 mg/mg). Flumazenil reversed the anxiolytic effect of AA at all doses. In addition, AA reduced oxidative stress by decreasing the concentration of MDA and increasing the levels of reduced glutathione (GSH) and CAT activity. Statistical analysis by Pearsons correlation indicated a positive correlation between anxiolytic effect of AA to its antioxidant and lipid peroxidation inhibitory activity. Furthermore, increased CAT activity and GSH concentrations in the hippocampus and frontal cortex of mice was also complementary to the reduced genotoxic damage observed in the study. In comet assay, AA did not increase in DNA damage. In conclusion, the results supported that AA possesses GABAA receptor mediated anxiolytic activity with the lack of myorelaxation and genotoxicity.


Frontiers in Pharmacology | 2018

Analgesic Activity, Chemical Profiling and Computational Study on Chrysopogon aciculatus

S. M. Neamul Kabir Zihad; Niloy Bhowmick; Shaikh Jamal Uddin; Nazifa Sifat; Md. Shamim Rahman; Razina Rouf; Muhammad Torequl Islam; Shrabanti Dev; Hazrina Hazni; Shahin Aziz; Eunüs S. Ali; Asish K. Das; Jamil A. Shilpi; Lutfun Nahar; Satyajit D. Sarker

Present study was undertaken to evaluate the analgesic activity of the ethanol extract of Chrysopogon aciculatus. In addition to bioassays in mice, chemical profiling was done by LC-MS and GC-MS to identify phytochemicals, which were further docked on the catalytic site of COX-2 enzymes with a view to suggest the possible role of such phytoconstituents in the observed analgesic activity. Analgesic activity of C. aciculatus was evaluated by acetic acid induced writhing reflex method and hot plate technique. Phytochemical profiling was conducted using liquid chromatography mass spectrometry (LC-MS) and gas chromatography mass spectrometry (GC-MS). In docking studies, homology model of human COX-2 enzyme was prepared using Easy Modeler 4.0 and the identified phytoconstituents were docked using Autodock Vina. Preliminary acute toxicity test of the ethanol extract of C. aciculatus showed no sign of mortality at the highest dose of 4,000 mg/kg. The whole plant extract significantly (p < 0.05) inhibited acetic acid induced writhing in mice at the doses of 500 and 750 mg/kg. The extract delayed the response time in hot plate test in a dose dependent manner. LC-MS analysis of the plant extract revealed the presence of aciculatin, nudaphantin and 5α,8α-epidioxyergosta-6,22-diene-3β-ol. Three compounds namely citronellylisobutyrate; 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one and nudaphantin were identified in the n-hexane fraction by GC-MS. Among these compounds, six were found to be interacting with the binding site for arachidonic acid in COX-2 enzyme. Present study strongly supports the traditional use of C. aciculatus in the management of pain. In conclusion, compounds (tricin, campesterol, gamma oryzanol, and citronellyl isobutyrate) showing promising binding affinity in docking studies, along with previously known anti-inflammatory compound aciculatin can be held responsible for the observed activity.


Journal of Pharmacological Sciences | 2007

Stimulation of Histamine H1 Receptor Up-Regulates Histamine H1 Receptor Itself Through Activation of Receptor Gene Transcription

Asish K. Das; Sachiho Yoshimura; Ryoko Mishima; Katsumi Fujimoto; Hiroyuki Mizuguchi; Shrabanti Dev; Yousuke Wakayama; Yoshiaki Kitamura; Shuhei Horio; Noriaki Takeda; Hiroyuki Fukui


Allergology International | 2006

Dexamethasone Suppresses Histamine Synthesis by Repressing both Transcription and Activity of HDC in Allergic Rats

Yoshiaki Kitamura; Asish K. Das; Y. Murata; Kazutaka Maeyama; Shrabanti Dev; Yousuke Wakayama; Bukasa Kalubi; Noriaki Takeda; Hiroyuki Fukui

Collaboration


Dive into the Asish K. Das's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge