Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asita Chatterjee is active.

Publication


Featured researches published by Asita Chatterjee.


Molecular Plant-microbe Interactions | 2001

Effects of the Two-Component System Comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the Production of Global Regulatory rsmB RNA, Extracellular Enzymes, and HarpinEcc

Yaya Cui; Asita Chatterjee; Arun K. Chatterjee

Posttranscriptional regulation mediated by the regulator of secondary metabolites (RSM) RsmA-rsmB pair is the most important factor in the expression of genes for extracellular enzymes and HarpinEcc in Erwinia carotovora subsp. carotovora. RsmA is a small RNA-binding protein, which acts by lowering the half-life of a mRNA species. rsmB specifies an untranslated regulatory RNA and neutralizes the RsmA effect. It has been speculated that GacA-GacS, members of a two-component system, may affect gene expression via RsmA. Because expA, a gacA homolog, and expS (or rpfA), a gacS homolog, have been identified in E. carotovora subsp. carotovora, we examined the effects of these gacA and gacS homologs on the expression of rsmA, rsmB, and an assortment of exoprotein genes. The gacA gene of E. carotovora subsp. carotovora strain 71 stimulated transcription of genes for several extracellular enzymes (pel-1, a pectate lyase gene; peh-1, a polygalacturonase gene; and celV, a cellulase gene), hrpNEcc (an E. carotovora subsp. carotovora gene specifying the elicitor of hypersensitive reaction), and rsmB in GacA+ and GacS+ E. carotovora subsp. carotovora strains. Similarly, the E. carotovora subsp. carotovora gacA gene stimulated csrB (rsmB) transcription in Escherichia coli. A GacS- mutant of E. carotovora subsp. carotovora strain AH2 and a GacA- mutant of E. carotovora subsp. carotovora strain Ecc71 compared with their parent strains produced very low levels of rsmB, pel-1, peh-1, celV, and hrpNEcc transcripts but produced similar levels of rsmA RNA and RsmA protein as well as transcripts of hyperproduction of extracellular enzymes (Hex) hexA, kdgR (repressor of genes for uronate and pectate catabolism), rsmC, and rpoS (gene for Sigma-S, an alternate Sigma factor). The levels of rsmB, pel-1, peh-1, celV, and hrpNEcc transcripts as well as production of pectate lyase, polygalacturonase, cellulase, protease, and HarpinEcc proteins were stimulated in GacS- and GacA- mutants by GacS+ or GacA+ plasmids, respectively. The GacA effect on exoenzyme genes and hrpNEcc was abrogated in E. carotovora subsp. carotovora mutants deficient in RsmA and RsmC or RsmA, RsmC, and rsmB RNA. The expression of lacZ transcriptional fusions of rsmB of Erwinia amylovora and Erwinia herbicola pv. gypsophilae was markedly reduced in a GacA- and a GacS- mutant of Pseudomonas syringae pv. syringae. Southern blot hybridization revealed the presence of gacA and gacS homologs in all tested strains of soft-rotting Erwinia spp. and several nonsoft-rotting Erwinia species such as E. amylovora, E. rhapontici, E. herbicola, E. stewartii, and E. herbicola pv. gypsophilae. These findings establish that the GacA-GacS system controls transcription of rsmB of E. carotovora subsp. carotovora, E. amylovora, and E. herbicola pv. gypsophilae and support the hypothesis that the effects of this two-component system on extracellular protein production in E. carotovora subsp. carotovora is mediated, at least in part, via the levels of rsmB transcripts.


Molecular Plant-microbe Interactions | 2003

GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors.

Asita Chatterjee; Yaya Cui; Hailian Yang; Alan Collmer; James R. Alfano; Arun K. Chatterjee

Concerted investigations of factors affecting host-pathogen interactions are now possible with the model plant Arabidopsis thaliana and its model pathogen Pseudomonas syringae pv. tomato DC3000, as their whole genome sequences have become available. As a prelude to analysis of the regulatory genes and their targets, we have focused on GacA, the response regulator of a two-component system. The DC3000 gene was cloned by testing for the reversal of phenotypes of an Erwinia GacA- mutant. A GacA- mutant of DC3000 constructed by marker exchange produces much-reduced levels of transcripts of three alternate sigma factors: HrpL, required for the production of effector proteins and their translocation via the type III secretion system; RpoS, required for stress responses and secondary metabolite production; and RpoN, required for an assortment of metabolic processes and expression of hrpL. GacA deficiency also reduces the expression of hrpR and hrpS, which specify enhancer-binding proteins of the NtrC family required for hrpL transcription; ahlI and ahlR, the genes for quorum sensing signal; salA, a regulatory gene known to control virulence; CorS, a sensor kinase; CorR, the cognate response regulator that controls coronatine biosynthetic genes; and rsmB and rsmZ, which specify untranslatable regulatory RNA species. gacA expression itself is regulated by environmental conditions in DC3000, since transcript levels are affected by growth phase and media composition. The observations that high levels of gacA RNA occur in the hrp-inducing medium and GacA deficiency reduces the levels of rpoS expression implicate an important role of GacA in stress responses of DC3000. Consistent with the effects on hrpL expression, the GacA- mutant produces lower levels of transcripts of avr, hrp, and hop genes controlled by HrpL. In addition, GacA deficiency results in reduced levels of transcripts of several HrpL-independent genes. As would be expected, these effects on gene expression cause drastic changes in bacterial behavior: virulence towards A. thaliana and tomato; multiplication in planta; efficiency of the induction of the hypersensitive reaction (HR); production of pigment and N-acyl-homoserine lactone (AHL), the presumed quorum-sensing signal; and swarming motility. Our findings establish that GacA, located at the top in a regulatory cascade in DC3000, functions as a central regulator by controlling an assortment of transcriptional and posttranscriptional factors.


Molecular Plant-microbe Interactions | 1996

The RsmA- mutants of Erwinia carotovora subsp. carotovora strain Ecc71 overexpress hrpNEcc and elicit a hypersensitive reaction-like response in tobacco leaves.

Yaya Cui; Madi L; Asita Mukherjee; Dumenyo Ck; Asita Chatterjee

Erwinia carotovora subsp. carotovora wild-type strain Ecc71 does not elicit the hypersensitive reaction (HR) in tobacco leaves. By mini-Tn5-Km and chemical mutagenesis we have isolated RsmA- mutants of Ecc71 that produce high basal levels of pectate lyases, polygalacturonase, cellulase, and protease; they also are hypervirulent. The RsmA- mutants, but not their parent strains, elicit an HR-like response in tobacco leaves. This reaction is characterized by the rapid appearance of water soaking followed by tissue collapse and necrosis. The affected areas remain limited to the region infiltrated with bacterial cells, and the symptoms closely resemble a typical HR, e.g., the reactions caused by Pseudomonas syringae pv. pisi. Moreover, low concentrations of cells of the mini-Tn5-Km insertion RsmA- mutant, AC5070, infiltrated into tobacco leaf tissue prevent elicitation of the rapid necrosis by AC5070 or by P. syringae pv. pisi. Elicitation of the HR-like response by the mutants is not affected by the deficiency of N-(3-oxohexanoyl)-L-homoserine lactone, the cell density (quorum) sensing signal. Cloning and sequence analysis have disclosed that E. carotovora subsp. carotovora strain Ecc71 possesses a homolog of E. chrysanthemi hrpN known to encode an elicitor of the HR; the corresponding Ecc71 gene is designated hrpNEcc. Northern (RNA) blot data show that the level of hrpNEcc mRNA is considerably higher in the RsmA- mutants than in the RsmA+ strains. Moreover, a low copy plasmid carrying the rsmA+ allele severely reduces the level of the hrpNEcc transcripts in the RsmA- mutants. These constructs, like the RsmA+ E. carotovora subsp. carotovora strains, do not elicit the HR-like response. These data taken along with the effects of rsmA on exoenzyme production and pathogenicity (A. Chatterjee et al., 1995, Appl. Environ. Microbiol. 61:1959-1967) demonstrate that this global regulator gene plays a critical role in plant interaction of E. carotovora subsp. carotovora.


Journal of Bacteriology | 2005

ExpR, a LuxR Homolog of Erwinia carotovora subsp. carotovora, Activates Transcription of rsmA, Which Specifies a Global Regulatory RNA-Binding Protein

Yaya Cui; Asita Chatterjee; Hiroaki Hasegawa; Vaishali Dixit; Nathan Leigh; Arun K. Chatterjee

N-acyl homoserine lactone (AHL) is required by Erwinia carotovora subspecies for the expression of various traits, including extracellular enzyme and protein production and pathogenicity. Previous studies with E. carotovora subsp. carotovora have shown that AHL deficiency causes the production of high levels of RsmA, an RNA binding protein that functions as a global negative regulator of extracellular enzymes and proteins and secondary metabolites (Rsm, regulator of secondary metabolites). We document here that ExpR, a putative AHL receptor belonging to the LuxR family of regulators, activates RsmA production. In the absence of AHL, an ExpR(+) E. carotovora subsp. carotovora strain compared to its ExpR(-) mutant, produces higher levels of rsmA RNA and better expresses an rsmA-lacZ transcriptional fusion. Moreover, the expression of the rsmA-lacZ fusion in Escherichia coli is much higher in the presence of expR(71) (the expR gene of E. carotovora subsp. carotovora strain Ecc71) than in its absence. We also show that purified preparation of MBP-ExpR(71) binds (MBP, maltose binding protein) rsmA DNA. By contrast, MBP-ExpR(71) does not bind ahlI (gene for AHL synthase), pel-1 (gene for pectate lyase), or rsmB (gene for regulatory RNA that binds RsmA), nor does ExpR(71) activate expression of these genes. These observations strongly suggest transcriptional activation of rsmA resulting from a direct and specific interaction between ExpR(71) and the rsmA promoter. Several lines of evidence establish that N-3-oxohexanoyl-L-homoserine lactone (3-oxo-C6-HL), the major AHL analog produced by E. carotovora subsp. carotovora strain Ecc71, inhibits ExpR(71)-mediated activation of rsmA expression. These findings for the first time establish that the expR effect in E. carotovora subsp. carotovora is channeled via RsmA, a posttranscriptional regulator of E. carotovora subspecies, and AHL neutralizes this ExpR effect.


Molecular Plant-microbe Interactions | 2002

Regulation of Erwinia carotovora hrpLEcc (sigma.LEcc), which encodes an extracytoplasmic function subfamily of sigma factor required for expression of the HRP regulon

Asita Chatterjee; Yaya Cui; Arun K. Chatterjee

In Erwinia carotovora subsp. carotovora (Ecc) strain 71 (Ecc71), HrpL(Ecc), an alternate sigma factor of the extracytoplasmic function subfamily, plays a central role in the expression of the hrp (hypersensitive reaction and pathogenicity) regulon. We document here that sigma-54 (RpoN) is required for full expression of hrpL(Ecc) and that HrpS, in conjunction with sigma-54, activates hrpL(Ecc) transcription. We also made the novel observation that integration host factor is required for the activation of the hrpL(Ecc) promoter. Our findings reveal that the RsmA/rsmB RNA-mediated post-transcriptional system, known to control extracellular enzyme and harpin production, affects hrpL(Ecc) expression as well. For example, hrpL(Ecc) RNA levels are barely detected in an RsmB- strain. Conversely, hrpL(Ecc) mRNA levels are much higher in RsmA- bacteria than in the RsmA+ parent. This effect is due to RsmA-promoted decay of hrpL(Ecc) RNA. Moreover, the following regulators known to control the production of either RsmA, rsmB RNA, or both also affect hrpL(Ecc) expression: GacA (response regulator of a two-component system), KdgR (an IcII type repressor), HexA (a LysR type repressor), RsmC (a putative transcriptional adapter). Based upon the data now available for Ecc and extrapolating from the evidence in other systems, we propose a tentative model that depicts the Hrp regulatory system of Ecc and explains the basis for coregulation of extracellular enzyme production and expression of the Hrp regulon.


Journal of Bacteriology | 2002

RsmA and the Quorum-Sensing Signal, N-[3-Oxohexanoyl]- l-Homoserine Lactone, Control the Levels of rsmB RNA in Erwinia carotovora subsp. carotovora by Affecting Its Stability

Asita Chatterjee; Yaya Cui; Arun K. Chatterjee

RsmA (for regulator of secondary metabolism), RsmC, and rsmB RNA, the components of a posttranscriptional regulatory system, control extracellular protein production and pathogenicity in Erwinia carotovora subsp. carotovora. RsmA, an RNA binding protein, acts as a negative regulator by promoting message decay. rsmB RNA, on the other hand, acts as a positive regulator by neutralizing the effect of RsmA. RsmC modulates the levels of RsmA and rsmB RNA by positively regulating rsmA and negatively controlling rsmB. The level of rsmB RNA is substantially higher in RsmA(+) bacteria than in RsmA(-) mutants. We show that rsmB RNA is more stable in the presence of RsmA than in its absence. RsmA does not stimulate the expression of an rsmB-lacZ transcriptional fusion; in fact, the beta-galactosidase level is somewhat higher in RsmA(-) bacteria than in RsmA(+) bacteria. We also investigated the basis for increased levels of rsmA and rsmB RNAs in the absence of the quorum-sensing signal, N-[3-oxohexanoyl]-L-homoserine lactone (OHL). The absence of OHL activates transcription of rsmA but not of rsmB. Instead, increased stability of rsmB RNA in the presence of RsmA accounts for the elevated levels of the rsmB RNA in OHL(-) bacteria. Mutant studies disclosed that while RsmA, OHL, and RsmC control the levels of rsmB RNA, high levels of rsmB RNA occur in the absence of RsmC or OHL only in RsmA(+) bacteria, indicating a critical role for RsmA in modulating the levels of rsmB RNA. The findings reported here firmly establish that the quorum-sensing signal is channeled in E. carotovora subsp. carotovora via the rsmA-rsmB posttranscriptional regulatory system.


Journal of Bacteriology | 2001

Molecular Characterization of Global Regulatory RNA Species That Control Pathogenicity Factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae

Weilei Ma; Yaya Cui; Yang Liu; Dumenyo Ck; Asita Mukherjee; Asita Chatterjee

rsmB(Ecc) specifies a nontranslatable RNA regulator that controls exoprotein production and pathogenicity in soft rot-causing Erwinia carotovora subsp. carotovora. This effect of rsmB(Ecc) RNA is mediated mostly by neutralizing the function of RsmA(Ecc), an RNA-binding protein of E. carotovora subsp. carotovora, which acts as a global negative regulator. To determine the occurrence of functional homologs of rsmB(Ecc) in non-soft-rot-causing Erwinia species, we cloned the rsmB genes of E. amylovora (rsmB(Ea)) and E. herbicola pv. gypsophilae (rsmB(Ehg)). We show that rsmB(Ea) in E. amylovora positively regulates extracellular polysaccharide (EPS) production, motility, and pathogenicity. In E. herbicola pv. gypsophilae, rsmB(Ehg) elevates the levels of transcripts of a cytokinin (etz) gene and stimulates the production of EPS and yellow pigment as well as motility. RsmA(Ea) and RsmA(Ehg) have more than 93% identity to RsmA(Ecc) and, like the latter, function as negative regulators by affecting the transcript stability of the target gene. The rsmB genes reverse the negative effects of RsmA(Ea), RsmA(Ehg), and RsmA(Ecc), but the extent of reversal is highest with homologous combinations of rsm genes. These observations and findings that rsmB(Ea) and rsmB(Ehg) RNA bind RsmA(Ecc) indicate that the rsmB effect is channeled via RsmA. Additional support for this conclusion comes from the observation that the rsmB genes are much more effective as positive regulators in a RsmA(+) strain of E. carotovora subsp. carotovora than in its RsmA(-) derivative. E. herbicola pv. gypsophilae produces a 290-base rsmB transcript that is not subject to processing. By contrast, E. amylovora produces 430- and 300-base rsmB transcripts, the latter presumably derived by processing of the primary transcript as previously noted with the transcripts of rsmB(Ecc). Southern blot hybridizations revealed the presence of rsmB homologs in E. carotovora, E. chrysanthemi, E. amylovora, E. herbicola, E. stewartii and E. rhapontici, as well as in other enterobacteria such as Escherichia coli, Salmonella enterica serovar Typhimurium, Serratia marcescens, Shigella flexneri, Enterobacter aerogenes, Klebsiella pneumoniae, Yersinia enterocolitica, and Y. pseudotuberculosis. A comparison of rsmB sequences from several of these enterobacterial species revealed a highly conserved 34-mer region which is predicted to play a role in positive regulation by rsmB RNA.


Molecular Plant-microbe Interactions | 1993

Characterization of a novel regulatory gene aepA that controls extracellular enzyme production in the phytopathogenic bacterium Erwinia carotovora subsp. carotovora.

Yang Liu; Murata H; Asita Chatterjee; Arun K. Chatterjee

Erwinia carotovora subsp. carotovora strain Ecc71 produces an array of extracellular enzymes including pectate lyase (Pel), polygalacturonase, cellulase, and protease. In strain Ecc71, these enzymes are coregulated by aepA, which encodes an activator of extracellular protein production (H. Murata, J. L. McEvoy, A. Chatterjee, A. Collmer, and A. K. Chatterjee, Mol. Plant-Microbe Interact, 4:239-246, 1991). The nucleotide sequence of a 2.7-kb aepA+ DNA segment revealed an open reading frame (ORF) of 1,395 bp which matches with the size of the aepA transcript determined by Northern blot analysis. aepA is predicted to encode a protein of 465 amino acid residues with a molecular mass of approximately 51 kDa and a pI of 6.52. The occurrence of a putative signal sequence and several hydrophobic domains suggest membrane localization of AepA. An aepA-lacZ operon fusion was constitutively expressed in E. coli (DH5 alpha) but inducible by pectate and celery extract in E. c. subsp. carotovora (AC5006). These findings suggest that aepA expression may be negatively regulated in E. c. subsp. carotovora. By assaying for the transcript of pel-1, which species a major secreted Pel species in strain Ecc71, and by following the expression of a pel1-lacZ operon fusion we determined that AepA activates pel-1 transcription. The characteristics of aepA including the lack of homology with other prokaryotic regulatory genes indicate that aepA encodes a novel regulatory protein required for extracellular protein production. Whereas homologs of Ecc71 aepA occur in E. c. subsp. carotovora and E. c. subsp. atroseptica strains, activation of exoenzyme production is markedly stimulated by aepA in E. c. subsp. carotovora than in E. c. subsp. atroseptica.


Journal of Bacteriology | 2006

Erwinia carotovora Subspecies Produce Duplicate Variants of ExpR, LuxR Homologs That Activate rsmA Transcription but Differ in Their Interactions with N-Acylhomoserine Lactone Signals

Yaya Cui; Asita Chatterjee; Hiroaki Hasegawa; Arun K. Chatterjee

The N-acylhomoserine lactone (AHL) signaling system comprises a producing system that includes acylhomoserine synthase (AhlI, a LuxI homolog) and a receptor, generally a LuxR homolog. AHL controls exoprotein production in Erwinia carotovora and consequently the virulence for plants. In previous studies we showed that ExpR, a LuxR homolog, is an AHL receptor and that it activates transcription of rsmA, the gene encoding an RNA binding protein which is a global negative regulator of exoproteins and secondary metabolites. An unusual finding was that the transcriptional activity of ExpR was neutralized by AHL. We subsequently determined that the genomes of most strains of E. carotovora subspecies tested possess two copies of the expR gene: expR1, which was previously studied, and expR2, which was the focus of this study. Comparative analysis of the two ExpR variants of E. carotovora subsp. carotovora showed that while both variants activated rsmA transcription, there were significant differences in the patterns of their AHL interactions, the rsmA sequences to which they bound, and their relative efficiencies of activation of rsmA transcription. An ExpR2- mutant produced high levels of exoproteins and reduced levels of RsmA in the absence of AHL. This contrasts with the almost complete inhibition of exoprotein production and the high levels of RsmA production in an AhlI- mutant that was ExpR1-. Our results suggest that ExpR2 activity is responsible for regulating exoprotein production primarily by modulating the levels of an RNA binding protein.


Journal of Bacteriology | 2008

Regulatory Network Controlling Extracellular Proteins in Erwinia carotovora subsp. carotovora: FlhDC, the Master Regulator of Flagellar Genes, Activates rsmB Regulatory RNA Production by Affecting gacA and hexA (lrhA) Expression

Yaya Cui; Asita Chatterjee; Hailian Yang; Arun K. Chatterjee

Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC(-) mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (Harpin(Ecc)) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC(+) plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC(-) mutant are responsible for the inhibition of rsmB RNA production, a condition conducive to the accumulation of free RsmA. Indeed, studies with an RsmA(-) FlhDC(-) double mutant and multiple copies of rsmB(+) DNA establish that the negative effect of FlhDC deficiency is exerted via RsmA. The FlhDC-mediated regulation of fliA has no bearing on exoprotein production in E. carotovora subsp. carotovora. Our observations for the first time establish a regulatory connection between FlhDC, HexA, GacA, and rsmB RNA in the context of the exoprotein production and virulence of E. carotovora subsp. carotovora.

Collaboration


Dive into the Asita Chatterjee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaya Cui

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Yang Liu

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

H Murata

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

J L McEvoy

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dumenyo Ck

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hitoshi Murata

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

A Collmer

University of Missouri

View shared research outputs
Researchain Logo
Decentralizing Knowledge