Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Askild Lorentz Holck is active.

Publication


Featured researches published by Askild Lorentz Holck.


Applied and Environmental Microbiology | 2005

Use of Ethidium Monoazide and PCR in Combination for Quantification of Viable and Dead Cells in Complex Samples

Knut Rudi; Birgitte Moen; Signe Marie Drømtorp; Askild Lorentz Holck

ABSTRACT The distinction between viable and dead cells is a major issue in many aspects of biological research. The current technologies for determining viable versus dead cells cannot readily be used for quantitative differentiation of specific cells in mixed populations. This is a serious limitation. We have solved this problem by developing a new concept with the viable/dead stain ethidium monoazide (EMA) in combination with real-time PCR (EMA-PCR). A dynamic range of approximately 4 log10 was obtained for the EMA-PCR viable/dead assay. Viable/dead differentiation is obtained by covalent binding of EMA to DNA in dead cells by photoactivation. EMA penetrates only dead cells with compromised membrane/cell wall systems. DNA covalently bound to EMA cannot be PCR amplified. Thus, only DNA from viable cells can be detected. We evaluated EMA-PCR with the major food-borne bacterium Campylobacter jejuni as an example. Traditional diagnosis of this bacterium is very difficult due to its specific growth requirements and because it may enter a state where it is viable but not cultivable. The conditions analyzed included detection in mixed and natural samples, survival in food, and survival after disinfection or antibiotic treatment. We obtained reliable viable/dead quantifications for all conditions tested. Comparison with standard fluorescence-based viable/dead techniques showed that the EMA-PCR has a broader dynamic range and enables quantification in mixed and complex samples. In conclusion, EMA-PCR offers a novel real-time PCR method for quantitative distinction between viable and dead cells with potentially very wide application.


Applied and Environmental Microbiology | 2000

Application of 5′-Nuclease PCR for Quantitative Detection of Listeria monocytogenes in Pure Cultures, Water, Skim Milk, and Unpasteurized Whole Milk

Hege Karin Nogva; Knut Rudi; Kristine Naterstad; Askild Lorentz Holck; D. A. G. Lillehaug

ABSTRACT PCR techniques have significantly improved the detection and identification of bacterial pathogens. Countless adaptations and applications have been described, including quantitative PCR and the latest innovation, real-time PCR. In real-time PCR, e.g., the 5′-nuclease chemistry renders the automated and direct detection and quantification of PCR products possible (P. M. Holland et al., Proc. Natl. Acad. Sci. USA 88:7276–7280, 1991). We present an assay for the quantitative detection of Listeria monocytogenesbased on the 5′-nuclease PCR using a 113-bp amplicon from the listeriolysin O gene (hlyA) as the target. The assay was positive for all isolates of L. monocytogenes tested (65 isolates including the type strain) and negative for all otherListeria strains (16 isolates from five species tested) and several other bacteria (18 species tested). The application of 5′-nuclease PCR in diagnostics requires a quantitative sample preparation step. Several magnetic bead-based strategies were evaluated, since these systems are simple and relatively easy to automate. The combination of nonspecific binding of bacteria to paramagnetic beads, with subsequent DNA purification by use of the same beads, gave the most satisfactory result. The detection limit was approximately 6 to 60 CFU, quantification was linear over at least 7 log units, and the method could be completed within 3 h. In conclusion, a complete quantitative method for L. monocytogenes in water and in skimmed and raw milk was developed.


Microbiology | 1992

Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706.

Askild Lorentz Holck; Lars Axelsson; Stein-Erik Birkeland; Thea Aukrust; Hans Blom

Sakacin A, a bacteriocin produced by Lactobacillus sake Lb706 and which inhibits the growth of Listeria monocytogenes, was purified to homogeneity by ammonium sulphate precipitation and ion-exchange, hydrophobic-interaction and reversed-phase chromatography. The complete amino acid sequence of sakacin A was determined by Edman degradation. The bacteriocin consisted of 41 amino acid residues and had a calculated M(r) of 4308.7, which is in good agreement with the value determined by mass spectrometry. The structural gene encoding sakacin A (sakA) was cloned and sequenced. The gene encoded a primary translation product of 59 amino acid residues which was cleaved between amino acids 18 and 19 to yield the active sakacin A. Sakacin A shared some sequence similarities with other bacteriocins.


Applied and Environmental Microbiology | 2000

Application of the 5'-nuclease PCR assay in evaluation and development of methods for quantitative detection of Campylobacter jejuni.

Hege Karin Nogva; Anette Bergh; Askild Lorentz Holck; Knut Rudi

ABSTRACT Campylobacter jejuni is recognized as a leading human food-borne pathogen. Traditional diagnostic testing for C. jejuni is not reliable due to special growth requirements and the possibility that this bacterium can enter a viable but nonculturable state. Nucleic acid-based tests have emerged as a useful alternative to traditional enrichment testing. In this article, we present a 5′-nuclease PCR assay for quantitative detection of C. jejuni and describe its evaluation. A probe including positions 381121 to 381206 of the published C. jejuni strain NCTC 11168 genome sequence was identified. When this probe was applied, the assay was positive for all of the isolates of C. jejunitested (32 isolates, including the type strain) and negative for all other Campylobacter spp. (11 species tested) and several other bacteria (41 species tested). The total assay could be completed in 3 h with a detection limit of approximately 1 CFU. Quantification was linear over at least 6 log units. Quantitative detection methods are important for both research purposes and further development of C. jejuni detection methods. In this study, we used the assay to investigate to what extent the PCR signals generated by heat-killed bacteria interfere with the detection of viable C. jejuni after exposure at elevated temperatures for up to 5 days. An approach to the reduction of the PCR signal generated by dead bacteria was also investigated by employing externally added DNases to selectively inactivate free DNA and exposed DNA in heat-killed bacteria. The results indicated relatively good discrimination between exposed DNA from dead C. jejuni and protected DNA in living bacteria.


International Journal of Food Microbiology | 1999

Protective cultures inhibit growth of Listeria monocytogenes and Escherichia coli O157:H7 in cooked, sliced, vacuum- and gas-packaged meat.

Sylvia Bredholt; Truls Nesbakken; Askild Lorentz Holck

Contamination of cooked meat products with Listeria monocytogenes poses a constant threat to the meat industry. The aim of this study was therefore to investigate the use of indigenous lactic acid bacteria (LAB) as protective cultures in cooked meat products. Cooked, sliced, vacuum- or gas-packaged ham and servelat sausage from nine meat factories in Norway were inoculated with 10(3) cfu/g of a mixture of three rifampicin resistant (rif-mutant) strains of L. monocytogenes and stored at 8 degrees C for four weeks. Growth of L. monocytogenes and indigenous lactic acid flora was followed throughout the storage period. LAB were isolated from samples where L. monocytogenes failed to grow. Five different strains growing well at 3 degrees C. pH 6.2, with 3% NaCl, and producing moderate amounts of acid were selected for challenge experiments with the rif-resistant strains of L. monocytogenes. a nalidixic acid/streptomycin sulphate-resistant strain of Escherichia coli O157:H7 and a mixture of three rif-resistant strains of Yersinia enterocolitica O:3. All five LAB strains inhibited growth of both L. monocytogenes and E. coli O157:H7. No inhibition of Y. enterocolitica O:3 was observed. A professional taste panel evaluated cooked, sliced, vacuum-packaged ham inoculated with each of the five test strains after storage for 21 days at 8 degrees C. All samples had acceptable sensory properties. The five LAB strains hybridised to a 23S rRNA oligonucleotide probe specific for Lactobacillus sakei. These indigenous LAB may be used as protective cultures to inhibit growth of L. monocytogenes and E. coli O157:H7 in cooked meat products.


Applied and Environmental Microbiology | 2003

Biofilm Formation and the Presence of the Intercellular Adhesion Locus ica among Staphylococci from Food and Food Processing Environments

Trond Møretrø; Lene Hermansen; Askild Lorentz Holck; Maan Singh Sidhu; Knut Rudi; Solveig Langsrud

ABSTRACT In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants.


Antimicrobial Agents and Chemotherapy | 2002

Frequency of Disinfectant Resistance Genes and Genetic Linkage with β-Lactamase Transposon Tn552 among Clinical Staphylococci

Maan Singh Sidhu; Even Heir; Truls Leegaard; Karianne Wiger; Askild Lorentz Holck

ABSTRACT A total of 61 strains of Staphylococcus aureus and 177 coagulase-negative staphylococcal strains were isolated from the blood of patients with bloodstream infections and from the skin of both children under cancer treatment and human immunodeficiency virus-positive patients. The MIC analyses revealed that 118 isolates (50%) were resistant to quaternary ammonium compound-based disinfectant benzalkonium chloride (BC). The frequencies of resistance to a range of antibiotics were significantly higher among BC-resistant staphylococci than among BC-sensitive staphylococci. Of 78 BC-resistant staphylococcal isolates, plasmid DNA from 65 (83%), 2 (3%), 43 (55%), and 15 (19%) isolates hybridized to qacA or -B (qacA/B), qacC, blaZ, and tetK probes, respectively. The qacA/B and blaZ probes hybridized to the same plasmid in 19 (24%) staphylococcal strains. The plasmids harboring both qacA/B and blaZ genes varied from approximately 20 to 40 kb. The Staphylococcus epidermidis Fol62 isolate, harboring multiresistance plasmid pMS62, contained qacA/B and blaZ together with tetK. Molecular and genetic studies indicated different structural arrangements of blaZ and qacA/B, including variable intergenic distances and transcriptional directions of the two genes on the same plasmid within the strains. The different organizations may be due to the presence of various genetic elements involved in cointegration, recombination, and rearrangements. These results indicate that qac resistance genes are common and that linkage between resistance to disinfectants and penicillin resistance occurs frequently in clinical isolates in Norway. Moreover, the higher frequency of antibiotic resistance among BC-resistant strains indicates that the presence of either resistance determinant selects for the other during antimicrobial therapy and disinfection in hospitals.


International Biodeterioration & Biodegradation | 2003

Bacterial disinfectant resistance—a challenge for the food industry

Solveig Langsrud; Maan Singh Sidhu; Even Heir; Askild Lorentz Holck

Abstract The focus on hygiene in the food industry has resulted in an increasing use of chemical disinfection and it has been speculated that this will impose a selective pressure and contribute to the emergence of disinfectant-resistant microorganisms. The frequency of strains with a low-level resistance to quaternary ammonium compounds (QAC) is relatively high for Listeria monocytogenes (10%), Staphylococcus spp. (13%) and Pseudomonas spp. (30%) and lower for lactic acid bacteria (1.5%) and coliforms (1%) isolated from food and food processing industry. In general, bacteria isolated after disinfection are more resistant and represent a potential food safety or food spoilage problem. Adaptation to disinfectants may be accompanied by cross-resistance to related disinfectants. We have recently found a genetic linkage between resistance to QAC and antibiotics in food associated staphylococci, and there is a growing concern about cross-resistance between antibiotics and disinfectants. Disinfectant resistance can in most cases be prevented by effective cleaning and disinfection procedures. More effort should be made to avoid build-up of resistance in food production environments.


International Journal of Food Microbiology | 2001

Industrial application of an antilisterial strain of Lactobacillus sakei as a protective culture and its effect on the sensory acceptability of cooked, sliced, vacuum-packaged meats

Sylvia Bredholt; Truls Nesbakken; Askild Lorentz Holck

The application of a protective lactic acid bacterium (LAB) during the commercial production of cooked meat products is described. The LAB, a strain of Lactobacillus sakei, was previously isolated from cooked ham and inhibited growth of Listeria monocytogenes and Escherichia coli O157:H7 in this product. L. sakei was applied to the cooked products at a concentration of 10(5)-10(6) cfu/g immediately before slicing and vacuum-packaging using a hand-operated spraying bottle. The LAB strain inhibited growth of 10(3) cfu/g of a cocktail of three rifampicin resistant mutant L. monocytogenes strains both at 8 degrees C and 4 degrees C. Consumer acceptance tests of cooked ham and of servelat sausage, a Norwegian non-fermented cooked meat sausage, showed that control and inoculated products were equally acceptable. The products were still acceptable after storage for 28 days at 4 degrees C and, after opening the packages, for a further 5 days at 4 degrees C. The findings presented here confirm that the L. sakei strain is suitable for use as a protective culture and may technically easily be implemented in the commercial production of cooked meat products.


Microbiology | 1996

Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains

Kathrin Hühne; Lars Axelsson; Askild Lorentz Holck; Lothar Kröckel

Sakacin P is a small, heat-stable, ribosomally synthesized peptide produced by certain strains of Lactobacillus sake. It inhibits the growth of several Gram-positive bacteria, including Listeria monocytogenes. A 7.6 kb chromosomal DNA fragment from Lb. sake Lb674 encompassing all genes responsible for sakacin P production and immunity was sequenced and introduced into Lb. sake strains Lb790 and Lb706X which are bacteriocin-negative and sensitive to sakacin P. The transformants produced sakacin P in comparable amounts to the parental strain, Lb674. The sakacin P gene cluster comprised six consecutive genes: sppK, sppR, sppA, spiA, sppT and sppE, all transcribed in the same direction. The deduced proteins SppK and SppR resembled the histidine kinase and response regulator proteins of bacterial two-component signal transducing systems of the AgrB/AgrA-type. The genes sppA and spiA encoded the sakacin P preprotein and the putative immunity protein, respectively. The predicted proteins SppT and SppE showed strong similarities to the proposed transport proteins of several other bacteriocins and to proteins implicated in the signal-sequence-independent export of Escherichia coli haemolysin A. Deletion and frameshift mutation analyses showed that sppK, sppT and sppE were essential for sakacin P production in Lb706X. The putative SpiA peptide was shown to be involved in immunity to sakacin P. Analogues of sppR and spiA were found on the chromosomes of Lb. sake Lb706X and Lb790, indicating the presence of an incomplete spp gene cluster in these strains.

Collaboration


Dive into the Askild Lorentz Holck's collaboration.

Top Co-Authors

Avatar

Rose Vikse

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Mikalsen

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Åshild Kristine Andreassen

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Even Heir

Norwegian Food Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lars Axelsson

Norwegian Food Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ingolf F. Nes

Norwegian University of Life Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge